
1

1.1

1.2

1.3

1.4

1.5

1.6

1.6.1

1.6.1.1

1.6.1.2

1.6.1.3

1.6.1.4

1.6.1.5

1.6.1.6

1.6.1.7

1.6.1.8

1.6.2

1.6.2.1

1.6.2.2

1.6.2.3

1.6.2.4

1.6.2.5

1.6.2.6

1.6.3

2.1

2.1.1

2.1.2

2.1.2.1

2.1.2.2

2.1.3

2.1.4

Table of Contents

Introduction
1 myCobot - From 0 to 1

2 Product

3 How to Read

4 Use Cases

5 Quick Start

6 myCobot Pi

pymycobot

1、arm_swing

2、arm_route_plan

3、arm_safety_control

4、testing_arm

5、arm_dance

6、use_arm

7、calibration_manipulator_arm

8、control_sunction_pump

myblockly

Myblockly Introduction

1、relax_fixed_arm

2、testing_jaw

3、set_move_time

4、mechanism_control

5、advanced_control_arm

Ros

Preparation
1 Background Knowledge

1.1 Industrial Robots

1.2 Software

1.2.1 github

1.2.2 arduino

1.3 Eletronics

1.4 Mechanics

2

2.1.5

2.2

2.2.1

2.2.2

2.2.3

2.2.4

2.3

2.3.1

3.1

3.2

3.2.1

3.2.2

3.3

3.4

3.4.1

3.5

3.5.1

3.5.2

3.5.3

3.5.4

3.5.5

3.6

3.7

3.8

3.8.1

3.8.1.1

3.8.1.2

3.8.1.3

3.8.2

3.8.2.1

3.8.2.2

3.8.3

3.9

3.9.1

3.9.2

3.9.3

1.5 Servos and Motors

2 Hardware Learning

2.1 Basic

2.2 Atom

2.3 MyCobot Servos

2.4 Mechanical & Mounting

3 myStudio

3.1 myStudio

Development
Software Platfrom and API

1 arduino

1.1 api

1.2 Test

2 uiflow

3 python

3.1 api

4 ROS&Moveit

4.1 Install enviroment

4.2 Install mycobot_ros

4.3 Control and Follow

4.4 Keyboard control

4.5 moveit

5 RoboFlow

6 Communication Protocols

7 Accessories

7.1 End-effectors

7.1.1 Gripper

7.1.2 Sucktion Pump

7.1.3 Climps

7.2 Support

7.2.1 G-Shape Support

7.2.2 Sucktion Support

7.3 Parst

8 Computer Vision

8.1 Environments

8.2 Color Detection

8.3 Shape Detection

3

3.9.4

3.9.5

4.1

4.2

4.3

8.4 Face Detection

8.5 QR code Detection

4 Others
1 Maintenance

2 FAQ

3 Resources

4

myCobot: From 0 to 1

1.1 Why do we design myCobot

An entry-level collaborative robot arm that everyone can learn and play

The original design of myCobot is to help
friends who are interested in 6-axisseries
robot to learn it from entry to master,
creating unprecedented experience and
teaching value.

What you can learn

Robotics is based on rigid body kinematics and dynamics, but also an
interdisciplinary subject that combines hardware, software, algorithm and
control.

With myCobot, you can learn that

Hardware
Embedded Microcontroller Based on ESP32
Motor and Steering Gear
M5Stack Basic/ Atom

Software
Arduino开发环境
C++
Python

5

ROS，MoveIt
Communication Data
Virtual Machines & Linux (visual system)

Algorithm
Series Manipulator
Coordinate and Coordinate Transformation坐标与坐标转换
DH Parameters
Kinematics
Manipulator Algorithm (e.g. dynamics)

Machine Vision (Vision Set)
Color Recognition
Image Recognition
Hand-Eye Calibration
See and Grab

Extended Applications
End-effector: gripper,suction pump, etc.
Robot Suit & Industry 4.0 Applications

Parts of Gitbook

View the directory on the left to jump

There are four major parts of Gitbook :

Introduction & Quick Start
Introduction -- introduce what myCobot is and its main features, etc.
How to Read -- help you read Gitbook efficiently according to your
learning level and knowledge background
Use Cases -- you can know exactly what use cases you can accomplish
with
Quick Start -- learn the unboxing of your myCobot, and its first boot and
use

Preparation before Development

6

Background Knowledge -- learn about tools, industrial robots,
algorithms, software, hardware,etc.
Hardware Learning -- learn about embedded hardware, structural
components, electronic components, etc.
Purpose of Use -- identify the purpose you want to use it for, and
complete the study related to your task

Development and Use
Development Environment -- learn to use Arduino, ROS, uiFlow,
roboFlow, python and others development environment to develop
myCobot
Accessories -- learn to use myCobot with different accessories, such us
bases, grippers, suction pumps and so on
Machine Vision -- learn to control myCobot under the guidance of
machine vision
Robot Modification -- learn how to modificate myCobot into a 4 or 5
axis manipulator

myCobot Suit
Intelligent Warehouse: learn how to use myCobot to carry different
objects
Artificial Intelligence: learn how to control myCobot to grasp objects
intelligently under the guidance of machine vision
Industry 4.0: learn how to grasp and place objects intelligently by
simulating production line

Information Source

Official website: www.elephantrobotics.com
Tutorial video:
https://www.youtube.com/channel/UC68l2RaRF2Mp8fzpCTzNBfA
Shop website: https://shop.elephantrobotics.com

Contact Us

If you have any other questions, you can contact us as follows.

We will answer you as soon as possible (working day 9:30-18:30)

Twitter: myCobot Official\@CobotMy
Facebook: https://www.facebook.com/MyCobot-116558893805177
Mail: support@elephantrobotics.com

http://www.elephantrobotics.com/
https://www.youtube.com/channel/UC68l2RaRF2Mp8fzpCTzNBfA
https://shop.elephantrobotics.com/
https://www.facebook.com/MyCobot-116558893805177
mailto:support@elephantrobotics.com

7

myCobot Introduction

1 Design Background

Upholding the mission of “Enjoy Robots World”, Elephant Robotics designed
and developed myCobot, the world’s smallest and lightest collaborative robot,
retaining most functions of industrial robots. With compact and elegant industrial
design, excellent and powerful performance, and huge software and hardware
development space, myCobot has unlimited possibilities in applications.

The design prototype of myCobot is from All-in-one Robot launched by Elephant
Robot in China in 2018. As the first all-in-one collaborative robot in China, it
has won “2019 CAIMRS Industrial Robot Innovation Award” and 2019 High-tech
Robot Annual “Innovation Technology Award”, and has been sold to more than 30
countries at home and abroad, receiving unanimous praise and recognition from
the world’s top 500 enterprises.

2 Introduction

https://www.elephantrobotics.com/

8

myCobot is the world's smallest and lightest six-axis collaborative robot,
jointly produced by Elephant Robotics and M5STACK. It is more than a
productivity tool full of imaginations, can carry on the secondary development
according to the demands of users to achieve personalized customization.

With a weight of 850g, a payload of 250g and an arm length of 350mm, myCobot
is compact but powerful, can not only be matched with a variety of end effectors
to adapt to different kinds of application scenarios also support the secondary
development of multi-platforms software to meet the needs of various scenarios
such as scientific research and education, smart home, and commercial
applications.

3 Framework

9

4 Parameters

表1： myCobot 280 Product Parameters

Parameter Data

Model myCobot-280

Working radius 280mm

Payload 250g

Arm Span 350mm

Repeatability ±0.5mm

Weight 850g

Power input 8V,5A

Working Conditon -5°~45°

Communication USB Type-C

5 Accessories

myCobot
End Effectors

Parallel Gripper

10

Adaptive Gripper
Angled Gripper
Suction Pump

Base
G Base
Flap Base

Others
Rocker
Battery Case

6 Features

Unique Industrial Design & Extremely Compact
myCobot is an integrated modular design and only weighs 850g which is very
easy to carry. Its overall body structure is compact with less spare parts and
can be quickly disassembled and replaced to realize plug and play.
High configuration & Equipped with 2 Screens
myCobot contains 6 high-performance servo motors with fast response, small
inertia and smooth rotation, and carries 2 screens supporting fastLED library
to show the expanded application scene more easily and clearly.
Lego Connector & Thousands of M5STACK Ecological Application
The base and end of myCobot are equipped with Lego Connector, which is
suitable for the development of various miniature embedded equipment. Its
base is controlled by M5STACK Basic, and thousands of application cases
can be use directly.
Bloky Programming & Supporting Industrial ROS
Using UIFlow visual programming software, programming myCobot is simple
and easy for everyone. You can also Arduino, ROS, or other multiple
functional modules of open source system, even RoboFlow, software of
industrial robots from Elephant Robotics.
Track Recording & Learn by hand
Get rid of the traditional point saving mode, myCobot supports drag teaching
to record the saved track and can save up to 60mins different tracks making
it easy and fun for new players to learn.

11

7 Patents

myCobot is protected by patents

NO. Patent Name Patent No.

1 Collaborative robotic arm 2020030683471.3

2 Mechanical arm linkage and mechanical
arm CN 208196791 U

3 Mechanical arm joint connector and
mechanical arm CN 208196840 U

4 Method and system for robot posture
maintaining, dragging and teaching

ZL 2018 1
1634649.3

5 A robot online collision detection method
and system based on momentum model

ZL 2019 1
0030748.9

6
A Kind of Robot Dynamic Parameter
Identification Method Independent of Joint
Angular Acceleration

ZL 2019 1
0773865.4

12

13

Reading Instruction

Reading Objectives

Gitbook is designed to help you to achieve goals

Major Goals

Understand the basic use of mechanics, electronics and software related to
myCobot
Understand the basic principle, joints, coordinates, terms, control of
mechanical arm, and master simple forward and inverse kinematics
calculations
Understand the basic operation of API, uiFlow Visual Programming
Have all skills to complete the intelligent warehouse suit, and can use
myCobot for simple waypoint movement, handling, control, etc.

Extended Goals

Understand the image recognition algorithms related to machine vision
Understand the construction of robot visual scene and the coordination
methods and strategies between vision and manipulator
Have all skills to complete the AI suit

Your Knowledge Level

Gitbook needs to be read according to your actual learning level and knowledge
background. We divide them into three levels:

14

Level Learning
Background

Skills and
Qualifications

Requires

Estimated
Learning

Time

Sugg
Develo

Platf

Freshman

Major in
Information,
Electronics,
Mechanical,
Automation

Have a
knowledge of
programming
languages
Basic
knowledge of
electronics

100h uiFlow

Superior

Knowledge
of Arduino or
other similar
hardware
products
Knowledge
of steering
gear and
programming
Knowledge
of IO
interface,
etc.

Know how to
debug API
interface Have
a knowledge of
communication

50h Arduino

Professional

Experience
with at least
one kind of
industrial
robot or
consumer
robot
Ability to
develop
hardware
and software

Understand
the Cartesian
coordinates
Understand
joint control
Understand
the basic use
of robots

30h all

Learning Schedule

15

NO Target Theory Practice Hour

1 Unboxing 1.track recording
& learn by hand

1.accessories of
myCobot
2.drive
myCobot to
track recording

1h

2
Background
Knowledge
Learning

1.application
background of
industrial robot
2.learning of
coordinate and
space, cartesian
3d coordinate
and rotation, xyz
3.joint and
coordinate
control of
industrial robot

1.joint control
and
reproduction
2.speed control
3.coordinate
point position
control and
circulation

5h

3 Hardware
Learning

1.principle and
operation of
embedded
electronics
2.principles of
steering gear and
motor 3.actuator
learning

1.control and
drive of
basic/atom
2.drive and
motion of
steering gear
3.study of robot
accessories

5h

4
Software:
Firmware
and Updates

1.identify different
software
platforms and its
purposes for use
2.principles of
firmware loading
and adaptation

1. choose the
platform that
works for you
2.download and
update the
firmware

2h

5
Software:
Development
Environment

1.building of
arduino
2.library file
download and
update of arduino
3. have a
knowledge of
serial
communication

1.be familiar
with arduino
2.load the
library
3.program and
run the first line
of code

2h

6

Learning and
Development
of Robot
Library

1.basic
communication
and operation
types of robots
2.common
operation of robot
3.control of
direction mode
and coordinate
mode

1.communicate
with myCobot
2.control
myCobot to
move
3.operate I0
port, gripper
and other
signals

5h

16

NO Target Theory Practice Hour

7 uiFlow

1.understand the
basic architecture
and relationships
of visual
programming
interface:
sensors,
actuators and
processes
2.variables,
loops, and
judgments
3.control method
of manipulator
arm

1.displays
different fonts in
basic
2.make
myCobot move
in different
positions
according to the
three buttons of
basic
3.control
myCobot to
cycle multiple
points

10h

8 roboFlow

1.learning of
common
industrial
operating system
for robots
2.common
modules of
roboFlow : point
position, fast
movement,IO
control and input
3.advanced
modules of
roboFlow :
looping, judging,
and pallet
procedures

1.control the
movement of
myCobot
2.basic control
of IO input and
output
3.cycle control
and judgment

5h

9 Intelligent
Warehouse

1.learning of
robot point
motion 2.rules for
the placement of
pallets 3.principle
of end-effector
control

1.operate the
robot to move at
different points
2.operate the
robot to grab
and place
3.control and
recognition of
gripper

10h

17

NO Target Theory Practice Hour

10
Algorithm
about Image
Recognition

1.introduction to
the visual sensor
of stickV
2.introduction
and programming
environment of
maixpy
3.methods and
strategies of
common color
recognition
4.methods and
strategies of
common shape
recognition
5.methods and
strategies of
common area
identification
6.json data
transfer

1.build
virtualbox
environment
2.read different
colors
3.recognition of
different shapes
4.data transfer
and reading in
uiFlow

20h

11
Vision and
Robotics
Control

1.correlation of
world and
camera
coordinates
2.standardization
of qr code image
3. movement and
correction

1.operate
myCobot to
camera
coordinate
system
2.the motion of
myCobot in the
camera
coordinate
system
3.re-calibration
and setting

10h

12 Artificial
Intelligence

1. learn and
make the flow
chart
2. learn and
make electrical
connection
diagram
3. description and
operation of
shape
classification

1.sensor
connection
2.connection
and drive of
gripper
3.robot actuator
& joint
debugging of
uiFlow

20h

In addition, you can also buy our Industry 4.0 suit to learn how to build and use
the simulation industrial applications.

Service Support

If the above schdule cannot meet your needs, you can contact the custom
service for further communication. We provide software and hardware
customization service.

We will answer you as soon as possible (working day 9:30-18:30)

Twitter: myCobot Official\@CobotMy

18

Facebook: https://www.facebook.com/MyCobot-116558893805177
Mail: support@elephantrobotics.com

https://www.facebook.com/MyCobot-116558893805177
mailto:support@elephantrobotics.com

19

4 Use cases
mycobot can be used for both personal learning applications and educational
applications.

Personal Applications
Leisure & entertainment
dance with rhythm, play an instrument, take pictures and video, write painting,
play games and so on

Intelligent furniture
remote control of myCobot to grab and carry objects with gripper and suction
pump, such as mixing coffee, grabing bread, etc.

Teaching AIDS
simulating the teaching of industrial robot, K12 teaching through entertainment
experience, cost-effective research laboratory assistant

Scientific and technological equipment
carry AGV car to realize automatic navigation and handling, combined with vision
to do infrared thermal imager, face tracking, etc.

Commercial Exhibition
cooperate with other products to do commercial scene demonstration

stickT

Educational Applications
1 Maker Education /K12 Education

Learning Platform: myCobot + Arduino/ROS + UIFlow
Learning Purpose: independent development, creative learning
Corresponding Suit: basic suit

20

2 Artificial Intelligence Course

Learning Platform: myCobot + StickV camera
Learning Purpose: robot algorithm, visual recognition algorithm
Corresponding Suit: artificial intelligence suit
Suit Content: visual system, feeding table

3 Vocational Education/Higher Education

Learning platform: myCobot + RoboFlow
Learning Purpose: robot algorithm, robot movement, robot simulation
Corresponding Suit: artificial intelligence suit
Suit Content: visual system, conveyor belt, feeding table, material block

21

4 Quick Start
Step 1: What’s in the Box

After the packaging box is in place, please confirm that the robot packaging is
intact and undamaged. If there is any damage, please contact the logistics
company and the local supplier in time.

1 myCobot 280【standard set】

myCobot-280
Brochure
Power Supply
USB-Type C
Jumper
M4*35, stainless steel screw
Hexagon wrench

2 Operating Environment and Conditions

22

Please install the robot system in an environment that meets the conditions
described in the table in order to exert and maintain the performance of the
machine and use it safely.

Environment Target

Temperature -10℃~45℃

Relative
Humidity 20%~70%

Indoor/Outdoor Indoor

Another
Environmental
Requirement

-Avoid sunlight. -Keep away from dust, oily smoke, salt,
iron filings, etc. -Keep away from flammable and
corrosive liquids and gases. -Do not contact with water.
-Does not transmit shock, vibration, etc. -Keep away
from strong electromagnetic interference sources.

Step 2: Fix the robot

You can fix the robot by our base, or design your own customized base to fix.

The specific fixation method can refer to the fixation of this机械臂的固定

Step 3: Power Supply

myCobot must use an external power source to provide enough electricity.

23

Rated Voltage: 7-9V
Rated Current: 3-5A
The type of plug: DC 5.5mm×2.1

Note: You can’t simply supply with typeC inserted into Basic.

Please use the official power supply to avoid damage to myCobot.

Step 4: Drag Teaching Demonstration

Before Recording:

After entering the recording mode, select the recording storage location

Button A: Store to Ram
Button B: Store to Memory Card
Button C: Exit the Recording Mode

Start Recording:

Click record and select the storage location, then manually drag the robotic
arm to complete your target action and remeber to save it, the action will be
recorded and stored .

Note: The default recording time is 100s.If the recording time is too long
that will exceed the memory, you can customize it by modifying the code, or
record it on the computer.

Play:

Click Button A to play the recored action

Button A: Start Playing the Recorded Action
Button B: Pause
Button C: Exit Playback

Open source code: The code above is open, named MainControl, you can
download and customize the code via github, refer to the link below:

https://github.com/elephantrobotics/myCobot/tree/main/Arduino/MycobotBasic/ex
amples

Video Tutorials: https://youtu.be/WzrbOrdQop0

https://github.com/elephantrobotics/myCobot/tree/main/Arduino/MycobotBasic/examples
https://youtu.be/WzrbOrdQop0

24

Raspberry myCobot

Begin your myCobot
Firstly, you need to connect power supply, display, keyboard and mouse as shown
in the following image, then initiate myCobot by the red switch.

The use of python

Start quickly

We've pre-loaded the python API package in the Raspberry Pi version of
myCobot pymycobot , just use it in your code.

You can create a python file at any position, for example: light_led.py , then write
the following code in the file:

from pymycobot.mycobot import MyCobot
from pymycobot import PI_PORT, PI_BAUD

mc = MyCobot(PI_PORT, PI_BAUD)
mc.set_color(255, 0, 0)

After saving, run it. You'll see the light board on top of myCobot lit in red.

Update the library

If our library is updated, it can also be easily synchronized on Raspberry Pi.

python2 update:

[sudo] pip install pymycobot --upgrade

python3 update:

[sudo] pip3 install pymycobot --upgrade

More examples

In addition to the above content, we provide more examples to help users use the
python API.

You can download it at the following address:

https://www.elephantrobotics.com/wp-content/uploads/2021/04/PythonAPI
tutorials.zip

25

The use of ROS
We've pre-installed ROS kinetic in the Raspberry version of myCobot and provide
the package myCobotROS , you can use it easily.

1. Go to the working directory:

cd ~/ros_catkin_ws
source devel/setup.bash

1. Go to myCobotROS's redeme, follow 3.Visualization in RViz , the address is
as follows:

https://github.com/elephantrobotics/myCobotROS#3-visualization-in-rviz

https://github.com/elephantrobotics/myCobotROS#3-visualization-in-rviz

26

Python API of myCobot

这是用于与mycobot进行串行通信并对其进行控制的python API。

Installation

Notes：

Make sure that you flash Atom to the top Atom，flash Transponder to the Basic.
Firmware Atom and Transponder Download link：https :
//github.com/elephantrobotics/myCobot/tree/main/Software You can also use
myStudio to update，download link of myStudio：https :
//github.com/elephantrobotics/myStudio/releases

Pip

pip install pymycobot --upgrade --user

Source code

git clone https://github.com/elephantrobotics/pymycobot.git <your-path>
cd <your-path>/pymycobot
Install
[sudo] python2 setup.py install
or
[sudo] python3 setup.py install

Usage:

from pymycobot.mycobot import mycobot
from pymycobot.mycobot import Angle, Coord
from pymycobot import PI_PORT, PI_BAUD # For raspberry pi version of mycobot.

The demo directory stores some test case files.

You can find out which interfaces pymycobot provides in pymycobot/README.md .

Please go to here.

https://github.com/elephantrobotics/myCobot/tree/main/Software
https://github.com/elephantrobotics/myCobot/tree/main/Software
https://github.com/elephantrobotics/myStudio/releases
https://github.com/elephantrobotics/myStudio/releases
https://github.com/elephantrobotics/pymycobot/blob/main/demo
https://github.com/elephantrobotics/pymycobot/blob/main/pymycobot/README.md

27

1、The robot arm swings left and
right
Introduction of API

API used to control the robot arm swings left anf right is:

1、 MyCobot(port)

Function: Initialize a MyCobot object.

Parameter Description: port ：The type of data is String, is the port number that
controls the robot arm, and the windows system can view it at the port in Device
Manager.

2、 get_angles()

Function: Get the angle of the six joint points of the robot arm

Return Value: The type of return value is list, with six elemental data,
corresponding to joints 1 to 6.

3、 send_angles(degrees,speed)

Function: Set the angle of six joint points at a time.

Parameter Description:

 degrees ：The type of parameter is list. The angle data for the six joint points
must be included. The angle value range of the six joint points is -180 to 180.

 speed ：The type pf data is int, value range 0~100. Represents the speed at
which the robot arm runs to the specified position, and the higher the value, the
greater the speed.

4、 send_angle(id, degree, speed)

Function: Set the angle of a single joint.

Parameter Description

 id ：Represents the joints of the robotic arm, a total of six joints, with a specific
representation. For example, joint1 can be: Angle.J1.value 。

 degree ：Represents the angle of the joint, value range -180 to 180.

 speed ：Represents the speed of the robot arm

5、 release_all_servos()

Function: Release the robot arm, let it swing manually at will.

Content of code

28

Effects as shown

from pymycobot.mycobot import MyCobot
from pymycobot.genre import Angle
from pymycobot import PI_PORT, PI_BAUD # When using the Raspberry Pi version of myCob
import time

Initialize a myCobot object
mc = MyCobot(PI_PORT, PI_BAUD)

Get the coordinates of the current location
angle_datas = mc.get_angles()
print(angle_datas)

Pass coordinate parameters with a number of columns, let the robot arm move to the s
mc.send_angles([0, 0, 0, 0, 0, 0], 50)
print(mc.is_paused())
Set the wait time to ensure that the robot arm has reached the specified position
while not mc.is_paused():
time.sleep(2.5)

Move joint 1 to the position of 90
mc.send_angle(Angle.J1.value, 90, 50)

Set the wait time to ensure that the robot arm has reached the specified position
time.sleep(2)

Set the number of cycles
num = 5

Let the robot arm swing left and right
while num > 0:
 # Move joint 2 to the position of 50
 mc.send_angle(Angle.J2.value, 50, 50)

 # Set the wait time to ensure that the robot arm has reached the specified positio
 time.sleep(1.5)

 # Move joint 2 to the position of -50
 mc.send_angle(Angle.J2.value, -50, 50)

 # Set the wait time to ensure that the robot arm has reached to the specified posi
 time.sleep(1.5)

 num -= 1

Let the robot arm shrink. You can swing the robot arm manually and then use the get_
Use this function to get the robot arm to where you want it to be.
mc.send_angles([88.68, -138.51, 155.65, -128.05, -9.93, -15.29], 50)

Set the wait time to ensure that the robot arm has reached to the specified position
time.sleep(2.5)

Release the robot arm, let it swing manually at will
mc.release_all_servos()

29

30

2、The head of the robot arm
intelligently plans the route
Knowledge preparation for API

 send_coords([x,y,z,rx,ry,rz],speed,model) is used to control the movement of the
head of the robot arm to a specified point in a specified manner.It is primarily used
to enable intelligent planning of the head of the robot arm from one position to
another.X,Y,Z represents the position of the head of the robot arm in space（The
coordinate system is a right-angle coordinate system），rx,ry,rz represents the
posture of the head of the robot arm at that point.（The coordinate system is
Euler coordinates）。The implementation of the algorithm and the representation
of Euler coordinates require a certain degree of academic knowledge, we won't
make too much explanation here, we only need to understand the right angle
coordinate system can we use this function well.

Introduction of API

1、 send_coords([x,y,z,rx,ry,rz],speed,model)

Function：Intelligently plan the route to move the head of the robot arm from the
original point to the specified point.

Parameter Description

 [x,y,z,rx,ry,rz] ：The parameters are combined into a spatial right-angle
coordinate system with x, y, z. The bottom of the robot arm is as the origin, x-
positive axis in front, y-positive axis on the right and z-axis on the
top. [x,y,z] represented as the position of the head of the robot
arm. [rx,ry,rz] indicate the posture of the head of the robot arm. You can adjust
the posture of the head of the robot arm and then use get_coords() to get the
posture in the position, In this way you don't need to know the Euler coordinate
system can you also understand the function.

 speed ：Represents the speed of the robot arm. The range of values is 0 to 100,
the higher the value, the faster the speed.

 model ：Values are limited to 0 and 1. 0 indicates that the path to the head of the
robot arm is nonlinear, means the route is randomly planned, as long as the head
of the robot arm moves to the specified point in a specified manner. 1 indicates
the movement of the head of the robot arm is linear, means the intelligent
planning route allows the head of the robot arm to move in a straight line to the
specified point.

2、 get_coords()

Function: Get the spatial coordinates of the head of the robot arm at this time and
the current posture.

31

Return value：The returned type is a list collection of six float elements, the first
three coordinates x,y,z representing the coordinates of the head of the robot arm,
and the last three coordinates rx, ry, rz representing the posture of the head of the
robot arm.

3、 send_coord(id,coord,speed)

Function：Only one of the coordinates of the x, y, z axis in the head space
coordinates of the robot arm is modified separately.

Parameter Description：

 id ：The type of data is genre.Coord , it represents the X, Y, Z axis of the head of
the robot arm. For example: Coord.X.value 。

 coord ：The type of data is float, Represents modifying the coordinate value.

 speed ：Represents the speed of the robot arm. Value range 0~100, the higher
the value, the faster it is.

Content of code

Effects as shown

from pymycobot.mycobot import MyCobot
from pymycobot.genre import Coord
from pymycobot import PI_PORT, PI_BAUD # When using the Raspberry Pi version of myCob
import time

Initialize a mycobot object
mc = MyCobot(PI_PORT, PI_BAUD)
Gets the angle and posture of the current head
coords = mc.get_coords()
print(coords)
Intelligently plan your route, Let the head linearly arrive at the coordinate[59.9,-
mc.send_coords([59.9, -65.8, 250.7, -50.99, 83.14, -52.42], 80, 1)
Set the wait time
time.sleep(1.5)

Intelligently plan your route, Let the head linearly arrive at the coordinate[59.9,-
mc.send_coords([59.9, -65.8, 350.7, -50.99, 83.14, -52.42], 80, 1)
Set the wait time
time.sleep(1.5)
Change only the x coordinates of the head,Set the x coordinate of the head to -40. L
mc.send_coord(Coord.X.value, -40, 70)

32

33

3、Safety control of th robot arm
Introduction of API

1、 is_power_on()

Function: Determine whether the robot arm is powered.

Return calue：1 indicates powered，0 indicates outage，-1 indicates an error

2、 power_on()

Function: Power the robot arm

3、 power_off()

Function: Power is lost to the robot arm and all functions will fail.

Note: The robot arm cannot be relaxed after outage，means set_free_mode() is
invalid.

4、 pause()

Function: Pause the movement of the robot arm.

5、 resume()

Function: Restore the movement of the robot arm.

6、 stop()

Function: The robot arm stops moving

7、 is_in_position(data,flag)

Function: Determines whether the robot arm has reached the specified position

Parameter Description:

 data ：A list collection of six elements, representing an angle collection, or a
collection of robot arm head data.

 flag ：1 Represents the head data of the robot arm，0 Represents the angle
collection data of the robot arm.

8、 is_paused()

Function: Determine if the robot arm is suspended

Return value：1 indicates a pause, 0 indicates that it is not paused, and -1
indicates an error.

Content of code

34

Effects as shown

from pymycobot.mycobot import MyCobot
from pymycobot import PI_PORT, PI_BAUD # When using the Raspberry Pi version of myCob
import time

Initialize a MyCobot object
mc = MyCobot(PI_PORT, PI_BAUD)
Determine whether the robot arm is powered or not, and if there is no power supply,
if not mc.is_power_on():
 # Power the robot arm
 mc.power_on()
The robot arm arrive at position[0,0,0,0,0,0] at 30 speeds
mc.send_angles([0, 0, 0, 0, 0, 0], 30)
Get the current time
start = time.time()
Check whether the robot arm has arrived at the position [0,0,0,0,0,0] or not
while not mc.is_in_position([0, 0, 0, 0, 0, 0], 0):
 # Restore the robot arm movement
 mc.resume()
 # Let the robot arm move 0.5s
 time.sleep(0.5)
 # Pause the robot arm movement
 mc.pause()
 # Determine if the movement timed out
 if time.time() - start > 9:
 # Stop movement of the robot arm
 mc.stop()
 break
Get the current time
start = time.time()
The robot arm arrive at position[88.68, -138.51, 155.65, -128.05, -9.93, -15.29] at
mc.send_angles([88.68, -138.51, 155.65, -128.05, -9.93, -15.29], 30)
Check whether the robot arm has arrived at the position [88.68, -138.51, 155.65, -12
while not mc.is_in_position([88.68, -138.51, 155.65, -128.05, -9.93, -15.29], 0):
 # Restore the movement of the robot arm
 mc.resume()
 # Let the robot arm move 0.5s
 time.sleep(0.5)
 # Pause the movement of the robot arm You can use is_paused() to check whether the
 mc.pause()
 # Check if the movement timed out
 if time.time() - start > 9:
 mc.stop()
 # Stop the movement of the robot arm
 break
Power off the robot arm after operation
mc.power_off()

35

36

4、Test the robot arm
Introduction of API

1、 is_all_servo_enable()

Function：Determine if six joint points are working properly.

Return parameter：1 indicates working properly，0 means that it doesn't
work，-1 indicates an error alarm.

2、 jog_angle(joint_id,direction,speed)

Function：Let a joint point move continuously.

Parameter Description：

 joint_id ：value range1-6, six integers represent joint points 1 to 6.

 direction ：1 indicates increase in angle，0 indicates decrease in angle.

 speed ：Indicates the speed of increase and decrease.

3、 jog_stop()

Function：Stop the movement of joint points.

4、 release_servo(servo_id)

Function：Relax the specified joint points.

Parameter Description：

 servo_id ：valuer range 1-6, six integers represent joint points 1 to 6.

5、 focus_servo(servo_id)

Function：Secure the specified joint points

Parameter Description

 servo_id ：valuer range 1-6, six integers represent joint points 1 to 6.

Content of code

37

Effects as shown

from pymycobot.mycobot import MyCobot
from pymycobot import PI_PORT, PI_BAUD # When using the Raspberry Pi version of myCob
import time

Initialize a MyCobot object
mc = MyCobot(PI_PORT, PI_BAUD)
Determine whether the robot arm is powered or not, and if there is no power supply,
if not mc.is_power_on():
 # Power the robot arm
 mc.power_on()

Check that the six joints are working properly
You can also use is_servo_enable(servo_id) to change single calibration
if mc.is_all_servo_enable():
 # Power off the robot arm
 mc.power_off()
 # Check whether the robot arm is power off
 if mc.is_all_servo_enable() == -1:
 print("机臂

38

5、Dance of the robot arm
Introduction of API

1、 set_color(R, G, B)

Function：Set the color of the headlights of the robot arm

Parameter Description：

R,G,B：Corresponding to the value of color array[R,G,B]

Content of code

Effects as shown

from pymycobot.mycobot import MyCobot
from pymycobot import PI_PORT, PI_BAUD # When using the Raspberry Pi version of myCob
import time

if __name__ == '__main__':
 # Initialize a MyCobot object
 mc = MyCobot(PI_PORT, PI_BAUD)
 # Set the start time
 start = time.time()
 # Let the robot arm move to the specified position
 mc.send_angles([-1.49, 115, -153.45, 30, -33.42, 137.9], 80)
 # Check whether it move to the specified positon
 while not mc.is_in_position([-1.49, 115, -153.45, 30, -33.42, 137.9], 0):
 # Restore the movement of the robot arm
 mc.resume()
 # Let the robot arm move 0.5s
 time.sleep(0.5)
 # Pause the movement of the robot arm
 mc.pause()
 # Check if the movement timed out
 if time.time() - start > 3:
 break
 # Set start time
 start = time.time()
 # Let the movement last 30 seconds
 while time.time() - start < 30:
 # Let the robot arm reach this position quickly

 mc.send_angles([-1.49, 115, -153.45, 30, -33.42, 137.9], 80)
 # Set the color of the light to[0,0,50]
 mc.set_color(0, 0, 50)
 time.sleep(0.7)
 # Let the robot arm reach this position quickly
 mc.send_angles([-1.49, 55, -153.45, 80, 33.42, 137.9], 80)
 # Set the color of the light to[0,50,0]
 mc.set_color(0, 50, 0)
 time.sleep(0.7)

 # mc.release_all_servos()

39

40

6、Use of gripper
Introduction of API

1、 is_gripper_moving()

Function：Determine if the gripper is running.

Return parameter：

1 means running, 0 means no, and -1 indicates an error

2、 set_encoder(joint_id, encoder)

Function：Turn the specified joint point to the specified position

Parameter Description

 joint_id ：value range 1-7, Represents 1 to 6 joint points and grippers
respectively.

 encoder ：Value range 0~4096，2048 means 0 when the value range is -180-
-180

3、 set_encoders(encoders, sp)

Function：Let the robot arm move to the specified position.

Parameter Description：

 encoders ：A list collection of six int elements, with the order of six encoder data
representing the position of 1 to 6 joint points.

 sp ：Indicates the rotate speed of the robot arm.

4、 get_encoder(joint_id)

Function：Gets encoder data for the specified joint point.

Parameter Description

 joint_id ：Value range 1-7, reprents 1-6 joint points and grippers respectively.

Return value：

 encoder ：Indicate the encoder data information of this joint

5、 set_gripper_value(value, speed)

Function：Let the gripper turn to the specified position at the specified speed.

Parameter Description:

 value ：Indicates where the claws are to be reached, value range 0~4096。

 speed ：Indicates how much speed it turns, value range 0~100。

6、 get_gripper_value()

41

Function：Get the encoder data information of gripper

Return value：

 encoder ：the data information of gripper

7、 set_gripper_state(flag, speed)

Function：Let the gripper reach the specified state at the specified speed.

Parameter Description

 flag ：1 means claws are closed and 0 means claws are open.

 speed ：Indicates how quickly the specified state has been reached，value range
0~100。

Content of code

42

Effects as shown

from pymycobot import PI_PORT, PI_BAUD # When using the Raspberry Pi version of myCob
from pymycobot.mycobot import MyCobot
import time

def gripper_test(mc):
 print("Start check IO part of api\n")
 # Check if the gripper is moving
 flag = mc.is_gripper_moving()
 print("Is gripper moving: {}".format(flag))
 time.sleep(1)

 # Set the current position to (2048).
 # Use it when you are sure you need it.
 # Gripper has been initialized for a long time. Generally, there
 # is no need to change the method.
 # mc.set_gripper_ini()
 # Set joint point 1, let it rotates to the position 2048
 mc.set_encoder(1, 2048)
 time.sleep(2)
 # Set 6 joint position, let the robot arm rotates to the position at 20 speeds.
 mc.set_encoders([1024, 1024, 1024, 1024, 1024, 1024], 20)
 time.sleep(3)
 # Get location information for joint point 1
 print(mc.get_encoder(1))
 # Set the gripper rotate to the position 2048
 mc.set_encoder(7, 2048)
 time.sleep(3)
 # Set the gripper rotate to the position 1300
 mc.set_encoder(7, 1300)
 time.sleep(3)

 # Set the gripper to the state 2048 at 70 speeds.
 mc.set_gripper_value(2048, 70)
 time.sleep(3)
 # Set the gripper to the state 1500 at 70 speeds.
 mc.set_gripper_value(1500, 70)
 time.sleep(3)

 # Set the state of gripper，Let it open its paws quickly at 70 speeds
 mc.set_gripper_state(0, 70)
 time.sleep(3)
 # Set the state of gripper，Let it close its paws quickly at 70 speeds
 mc.set_gripper_state(1, 70)
 time.sleep(3)

 # Get the value of gripper
 print("")
 print(mc.get_gripper_value())

if __name__ == "__main__":
 # Initialize a MyCobot object
 mc = MyCobot(PI_PORT, PI_BAUD)
 # Let it move to the zero position
 mc.set_encoders([2048, 2048, 2048, 2048, 2048, 2048], 20)
 time.sleep(3)
 gripper_test(mc)

43

44

7、Calibration of the robot arm
Introduction of API

1、 set_servo_calibration(servo_no)

Function：When the position is adjusted to zero, there is impalignment of the port
of the robot arm, and the wrong joint can be calibrated using this method.

Parameter Description

 servo_no ：Value range 1~6，represents 6 joint points.

2、 is_controller_connected()

Function: Determines whether the current robot arm is in a writeable state

Return value：1 means writeable, 0 means you can't write, -1 indicates an error.

3、 set_gripper_ini()

Function: Set 6 joints to the initial position.

Content of code

from pymycobot.mycobot import MyCobot
from pymycobot import PI_PORT, PI_BAUD # hen using the Raspberry Pi version of myCobo

Initailize a MyCobot object
mc = MyCobot(PI_PORT, PI_BAUD)

Detect whether the robot arm can burn into the program
if mc.is_controller_connected() != 1:
 print("Connect the robot arm correctly for program writing")
 exit(0)

Fine-tune the robot arm to ensure that all snaps in the adjusted position are aligne
Based on the alignment of the robot arm port, only a case is given here
mc.send_angles([0, 0, 18, 0, 0, 0], 20)

Calibrate the position at this time, and the angle position after calibration is rep
The for loop is equivalent to the set_gripper_ini() method
for i in range(1, 7):
 mc.set_servo_calibration(i)

45

8、Control suction pump
Connection

Firstly, we need to power the sunction pump as shown in the picture

Next we need to connect sunction pump and myCobot, using control cables.
Connect 2 and 5 in the pin port. As shown in the picture.

Introduction of API
 set_basic_output(pin_no, pin_signal)

Function：By connecting pin_no and control signal pin_signal to control external
devices.

Parameter Description:

46

 Pin_no ：The int type parameter, the number of the label at the bottom of the
device takes only the numeric portion.

 Pin_signal ：1 means stop running, 0 means run.

Content of code

from pymycobot.mycobot import MyCobot
from pymycobot import PI_PORT, PI_BAUD # When using the Raspberry Pi version of myCob
import time

Initialize a MyCobot object
mc = MyCobot(PI_PORT, PI_BAUD)

Open sunction pump
def pump_on():
 # Let 2 work
 mc.set_basic_output(2, 0)
 # Let 5 work
 mc.set_basic_output(5, 0)

Stop sunction pump
def pump_off():
 # Let 2 stop working
 mc.set_basic_output(2, 1)
 # Let 5 stop working
 mc.set_basic_output(5, 1)

pump_off()
time.sleep(3)
pump_on()
time.sleep(3)
pump_off()
time.sleep(3)

47

Use Instruction of Myblockly
Interfacce introduction

1-1interface

As 1-1 indicates，① represents the Puzzle Toolbar, which contains logical control
puzzles, variable settings puzzles, mathematical function puzzles, text type
puzzles, and control robot arm method puzzles. ② represents a jigsaw puzzle
board, pulls the method module in the puzzle toolbar into the puzzle board, and
the method module will appear in the drawing board. ③ represents the code
display area, and the method module stitched into the drawing board
automatically generates python code in the code display area.

Introduction of save and load

1-2Save and Load

After programming, you can click ①save in the picture1-2 to save, the effect after
clicking is shown in the picture1-3.

48

1-3Save Interface

In particular, it is important to add a suffix .xml when defining a saved file
name, otherwise the saved file will not be loaded. Of course, if you
accidentally forget to add the suffix.xml. It doesn't matter, just rename the
file before loading it and add .xml suffix.

1-4Load Interface

You can click ②Load in the picture1-2 to load the file, the effect after clicking is
shown in the picture1-4. The file that is loaded at this time can only be a file with a
.xml suffix.

49

Intrduction of Myblockly
Logic

1、As shown in Figure 1-1, all methods contained in the Logic module are
included.

1-1 Logic Module Presentation

2、Method is explained in detail

1-2 detailed method（一）

1-3 方法详细（二）

Loops

1、如图2-1所示即为Loops模块所包含的所有方法。

As 1-2 indicates, ① indicates if（condition）do（program）method. If the conditions are

如图1-3所示，①表示if（条件）do（程序1）else（程序2），若满足条件则执行程序1，否则执行程序2。②

50

2-1 Loops模块

2、Method is explained in detail

2-2 Loops模块方法详细

注：在循环中想使用循环中的变量需要设置一致的变量。

Text

1、如图3-1所示即为Text模块所包含的所有方法。

如图2-2所示，①表示重复执行10次do里面的程序。②表示重复变量num次do中的程序（do被遮挡）。点击②中

51

3-1 Text Module

2、Method is explained in detail

3-2 Text模块方法详细（一）

3-3 Text模块方法详细（二）

如图3-2所示，①表示文本内容，可以自定义文本内容。②表示计算指定文本内容的长度。③表示输出文本内容

52

Math

1、如图4-1所示即为Math模块所包含的所有方法。

4-1 Math Module

2、Method is explained in detail

4-2 Math模块方法详细

List

1、如图5-1所示即为List模块所包含的所有方法。

如图3-3所示，①表示指定字符串在选定字符串中第一次或最后一次出现的位置，可以点击下拉框选择是第一

如图4-2所示，(1)表示数字常量，该数值常量是可以自定义的。(2)表示两个变量逻辑相加减等运算操作，可

53

5-1 List Module

2、Method is explained in detail

5-2 List模块方法详细

Variables

1、如图6-1所示即为Variables模块

如图5-2所示，(1)表示创建一个空的list数组。(2)表示创建一个数组，该数组为指定一个数重复多少次后

54

6-1 Variables模块

2、如图6-2所示，点击箭头所指处即可开始创建变量。

6-2 自定义变量名

如图6-2所示，在输入框中输入自定义的变量名，点击Look up即可创建。

6-3 变量生成效果

如图6-3所示即为创建好后的变量。

55

Functions

7-1 Functions Module

Time

8-1 Time Module

Mycobot

如图7-1所示，Functions模块包含两类函数，第一种如①所示是没有返回值的，第二种如⑥所示有返回值的。

As 8-1 indicates, sleep（time_num）represents waiting `time_num` seconds before execut

56

9-1 Mycobot Module

The method of use of this module, please refer to pymycobot。

57

Release and fixation of the robot arm
Case Introduction

In this case, by using loop call, the method of focus servo to fix 6 joint points，and
use time method to fix it for 10 seconds. Finally use loop call release method to
release 6 joint points.

二、Content of demo

58

Gripper detection of the robot arm
Case Introduction

By using Set_Gripper_State function of myCobot to let the gripper open and close
10 times, and adjust angle after each group close.

demo

59

Set the movement time of the robot
arm
Case content

The main experimental content of this case is to call the jog_angle function to
keep the six joints moving continuously through a loop. Stop its motion with the
 jog_stop function.Finally, the robot arm is moved to a safer position and the joint
is released and powered off.

Content of program

60

Control mechanism of the robot arm
Case content

This case mainly calls some of the commonly used control mechanism functions
of the robot arm to control the robot arm, such as power off the robot arm, power
supply, suspension of motion, restore movement and other control mechanism
functions, as well as the control of the headlights of the robot arm.

Demo

61

Adavanced operation of the robot arm
Case Introduction

Mainly realize that the robot arm intelligent judge the function that the robot arm
has already arrived the specified position, based on this function, simply let the
robot arm repeat two arrival instructions.

Firstly use if do module to judge if the robot arm is powered, if not, you
should power the robot arm. Output the current angle node information.
Transfer the robot arm to zero. Define angles variable. Use the repeated
method in the creation of list type data to assign zero node information to
 angles . Define limit_time to determine if the movement times out.
Pass angles into the is in position method to determine whether the robot
arm has reached the specified position. Use the repeat module 0.5s per
movement to detect whether the robot arm has reached the specified position
and time out the timer, and if more than 7s the robot arm has not yet reached
the specified position, determine that it has arrived and execute the next
instructions.
The principle is similiar, so no more explanation

demo

62

When you use the Raspberry Pi version of mycobot, you should already have a
Raspberry Pi system equipped with ROS Kinetic.

For detailed usage, please refer to the ROS part of Chapter 3

63

1 Background

It is necessary to have an in-depth understanding of myCobot from the aspects of
hardware, software and robot algorithm. At the beginning, we can understand the
progress of robots by understanding the history of robots.

Robot
Software
Electronics
Mechanics
Motor

64

1.1 Robot
This chapter is excerpted from Introduction to robotics mechanics and control by
J.Craig. If you want to read more about it, please buy it online.

1 Background

The history of industrial automation is characterized by the rapid renewal of
technological means. The renewal of such automation technology is closely
related to the world economy, whether as an inducement or a result of the
development of the world economy. Industrial robot in the 1960s is undoubtedly a
unique equipment, it will be combined with the computer aided design (CAD)
system, computer aided manufacturing (CAM) system application, this is the
modern manufacturing automation of the latest development trend. These
technologies are leading the transition to a new field of industrial automation.

Manipulator is one of the most important types of industrial robots. Whether the
manipulator can be called an industrial robot is controversial. The equipment
shown here is generally considered to belong to the category of industrial robots,
while CNC (NC) grinders are usually outside this category.

Generally speaking, the research of manipulator mechanism and control theory is
not a new science, it is only a synthesis of traditional theory.Mechanical
engineering theory provides a methodology for the study of manipulator in static
and dynamic environments.The mathematical method is used to describe the
spatial motion of the manipulator and its characteristics.Control theory provides
various design methods and evaluation algorithms for the realization of desired
motion or force.Electrical engineering technology can be used in sensor and
industrial robot interface design;Computer technology provides the programming
platform needed to perform the desired task.

2 Basic Concepts

Mechanical Arm

Mechanical Arm can also be called industrial robot, cooperative robot,
manipulator arm, bionic arm, series robot, etc.

Position & Pose

In robot research, we usually study the position of objects in a three-dimensional
space. The objects referred to here include not only the lever, parts and grasping
tools of the manipulator, but also other objects in the workspace of the
manipulator. Usually these objects can be described by two very important
properties: position and pose. Naturally, we will first study how to express and
calculate these parameters mathematically.

In order to describe the position and posture of a space object, we usually place
the object firmly in a space coordinate system, that is, the reference frame, and
then we study the position and posture of the space object in this reference

65

coordinate system.

Direct Kinematics

Kinematics is the study of the motion of objects without regard to the forces
causing such motion. In kinematics, we study higher-order derivatives of position,
velocity, acceleration, and position variables with respect to time or other
variables. Thus, the research object of manipulator kinematics is all the geometric
and temporal characteristics of motion. Almost all manipulators are composed of
rigid links, adjacent links connected by joints that allow for relative motion. If it's a
revolute joint, its displacement is called the joint Angle. These joints are usually
fitted with position sensors to measure the relative position of adjacent bars. If you
have a revolute joint, this displacement is called the joint Angle. Some
manipulators have sliding (or moving) joints, so the displacement of two adjacent
links is a linear motion, which sometimes called the joint offset.

A typical problem in the study of manipulator kinematics is manipulator forward
kinematics. It is a static geometry problem to calculate the position and posture of
its end-effector of the manipulator. Specifically, given a set of values for joint
angles, the forward kinematics problem is to compute the position and posture of
the tool coordinate system relative to the base coordinate system. In general, we
refer to this process as the representation of manipulator position from joint space
description to Cartesian space description.

Degree of Freedom (DOF)

The number of DOF is the number of manipulator position variables in the
coordinate system (reference frame) with figure 1-5 in the manipulator, which
determines the position of all components in the mechanism. DOF is universal to
all mechanisms. For example, a four-bar mechanism has only one DOF (although
it has three movable rods). For a typical industrial robot, the number of joints is
equal to the number of DOF because manipulator arms are mostly open motion
chains and each joint position is defined by an independent variable.

End-effector

End-effector is installed at the free end of the manipulator. Depending on different
applications of robot, it may be a fixture, a welding torch, an electromagnet, or
some other devices. We usually describe the position of the manipulator in terms
of a tool coordinate system attached to its end-effector, and the corresponding
tool coordinate system is the base coordinate system connected to the fixed base
of the manipulator.

Inverse Kinematic

Given the position and posture of the end-effector of the manipulator, calculating
all joint angles that can reach the given position and attitude.

3 Space description

Position

66

Once the coordinate system is established, we can locate any point in the world
coordinate system with a position vector of 3x1. Since many coordinates areoften
defined in the world coordinate system, a piece of information must beattached to
the position vector indicating which coordinate system is defined.In this book, the
position vector has a leading superscript to indicate thecoordinate system to
which it refers.

Posture

67

We find that it is often necessary not only to represent points in space, but also to
describe the posture of objects in space. For example, if the vector "P" in Figure
2-2 directly determines a point between the fingers of the manipulator hand, the
position of the hand can only be fully determined if the posture of the hand is
known. Assuming that the manipulator has a sufficient number of joints, the
manipulator can be in any position and the position of the points between the
fingers remains constant. To describe the posture of an object, we will fix a
coordinate system on the object and give the representation of this coordinate
system with respect to the reference system. In Figure 2-2, the coordinate system
{B} is known to be fixed to the object in some way. The description in {B} relative
to {A} is sufficient to indicate the attitude of object (A).

Coordinate System

A reference frame can be described in terms of the relation of one coordinate
system with respect to another. The reference frame includes the concepts of
position and posture, which is considered to be a combination of these two
concepts in most cases. The position can be represented by a frame of reference
in which the rotation matrix is the identity matrix and the position vector in this
frame of reference determines the position of the described point. Similarly, if the
position vector in the frame of reference is the zero vector, then it represents the
posture.

4 DH Parameters

Definition

For rotational joint n, set 0=0.0, the direction of X axis is the same as that of X,
axis, the origin position of coordinate system (n) is selected to satisfy d.=0.0.For
prismatic joint n, the direction of axis 8 is set to meet 0.=0.0. When d.=0.0, the
origin of the coordinate system {n) is selected to be located at the intersection of
axis XN-1 and joint axis n.

In the link coordinate system, if the link coordinate system is fixedly attached to
the link as described above, the link parameters can be defined as follows:

a_i-1 ：along x_i-1 : move from the distance of z_i-1 to z_i
alpha_i-1 ：aroundx_i-1 ：rotate from the Angle of z_i-1 to z_i
d_i ：along z_i ：move from the distance of x_i-1 to x_i
theta_i ：aroundz_i ：rotate from the Angle of x_i-1 tox_i

myCobot DH parameter

68

Joint alpha a d theta offset

1 0 0 131.56 theta_1 0

2 PI/2 0 0 theta_2 -PI/2

3 0 -110.4 0 theta_3 0

4 0 -96 64.62 theta_4 -PI/2

5 PI/2 0 73.18 theta_5 PI/2

6 -PI/2 0 48.6 theta_6 0

69

1.2 Software
For myCobot users, software operation requires basic C/C++ knowledge to drive
microcontrollers Basic and Atom.

Meanwhile, the related software is mainly required by GitHub and Arduino

Github: download the latest myCobot code and update the related users
instructions
Arduino: IDE (integration development environment) of the core
development of myCobot need to program in C/C++

You can also directly use Python, ROS, UIFlow, and other development tools,
which are described in the chapter of Development and Use .

If you want to learn programming languages, you can learn from books, open
classes, online videos, etc.. And your development platforms can be Windows,
MacOS, or Linux.

70

Github

GitHub is a hosting platform for open source and private software projects, it
houses our software (Python, ROS, Arduino), APP, industrial visual programming
software - RoboFlow, firmware, user manual and development guide manual.

Github：https://github.com/elephantrobotics/myCobot

Please click to download as shown in the figure

https://github.com/elephantrobotics/myCobot

71

Arduino

Arduino
Arduino is an open source electronic prototyping platform that is convenient,
flexible and easy to use, contains hardware (various types of Arduino boards) and
software (Arduino IDE). The hardware part (or development board) consists of a
microcontroller (MCU), flash memory (FLASH), and a set of general input/output
interfaces (GPIO), etc., you can think of it as a microcomputer motherboard. The
software part is mainly composed of Arduino IDE on PC, related Board Support

Package (BSP) and abundant third-party function library. Users can easily
download the BSP related to the development board you own and the library of
functions by Arduino IDE to write your programs.

How to install Arduino IDE？
Driver Installation

M5Core host (including BASIC/GRAY/M5GO/FIRE/FACES). Before burning
program, please click the button below to download the corresponding
CP210X driver zip package according to the operating system you are
using. After unpacking the package, select the installation package
corresponding to the operating system number to install.

Download CP2104 driver
Windows10
MacOS
Linux

https://m5stack.oss-cn-shenzhen.aliyuncs.com/resource/drivers/CP210x_VCP_Windows.zip
https://m5stack.oss-cn-shenzhen.aliyuncs.com/resource/drivers/CP210x_VCP_MacOS.zip
https://m5stack.oss-cn-shenzhen.aliyuncs.com/resource/drivers/CP210x_VCP_Linux.zip

72

Arduino IDE
如果需要下载Arduino IDE 可以点击Aeduino 官网下载安装与电脑系统对应的版
本。

If you need to download Arduino IDE, you can click Arduinoto download and
install the version corresponding to your computer system.

Configure Arduino development
environment required by myCobot

1. Add the required development board

Open Arduino IDE, select File -> Preferences ->setting Then copy the URL
below to link to the attached development board manager
https://dl.espressif.com/dl/package_esp32_index.json

https://www.arduino.cc/en/software
https://www.arduino.cc/en/software
https://dl.espressif.com/dl/package_esp32_index.json

73

Select Tools -> Development Board: -> Development Board Manager

In the new dialog box that pops up, enter and search ESP32 , then click Install

(If the search fails, try restarting Arduino as below)

After the installation, select Tools -> Development Board: to check whether it
was successful As shown in the figure below:

74

2. Add Libraries

**Different hardware devices have different case
libraries, please choose to

download it according to the device you are using.**

You can use project libraries added by IDE.

Open Arduino IDE, select Project -> Load Library -> Management Library...

Search and install the following project libraries separately: M5Stack、
M5Core2、M5Atom、ESP32_Lite_Pack_Library, etc.. Steps are as follows:

75

Project libraries that need to be downloaded from GitHub, such as
MycobotBasic

Download link: https://github.com/elephantrobotics/myCobot

After downloading, unzip and add it according to the index below

https://github.com/elephantrobotics/myCobot

76

77

Click open and "The library has been added. Please check the 'Import Library'
menu.” is displayed in the lower right, then the environment configuration of
Arduino is complete.

78

Electronics

Introduction

Single-Chip Microcomputer (Microcontrollers/SCM) is a kind of integrated circuit
chip, which uses VLSI technology to integrate the central processing unit CPU
with data processing capabilities, random access memory RAM, read-only
memory ROM, various I/O ports, interrupt systems, and timer /Counter and other
functions (may also include display drive circuit, pulse width modulation circuit,
analog multiplexer, A/D converter and other circuits) integrated into a silicon chip
to form a small and complete microcomputer system, widely used in the field of
industrial control. From the 1980s, it developed from the 4-bit, 8-bit microcontroller
to the current 300M high-speed microcontroller.

Basic Structure

Arithmetic Unit

Arithmetic Unit is composed of arithmetic logic unit (ALU), accumulator and
register. The function of ALU is to perform arithmetic or logical operations on the
incoming data. The input comes from two 8-bit data sources, one from the
accumulator and the other from the data register. ALU can perform various
operations on the data, such as Addition, Subtraction, AND, OR, Comparison,
etc., and finally store the results in the accumulator.

The arithmetic machine has two functions:

79

Perform various arithmetic operations.
Perform various logical operations and perform logical tests, such as a zero-
value test or a comparison of two values.
All operations performed by arithmetic unit are directed by the control signal
issued by the controller, and an arithmetic operation produces an operation,
and a logical operation produces a decision.
Controller

Controller is composed of program counter, instruction register, instruction
decoder, timing generator and operation controller, etc. It is the "decision-making
body" of issuing commands, namely coordinating and directing the operation of
the entire microcomputer system. Its main functions are：

Extract an instruction from memory and indicates the location of the next
instruction in memory.
Decode and test the instructions,then generate the corresponding operation
control signal to facilitate the execution of the specified actions.
Direct and control the direction of data flow between CPU, memory, and
input/output devices.

Microprocessor interconnects ALU, counter, register and control parts through an
internal bus, and connects the external memory, input and output interface circuit
through an external bus. External bus, also known as system bus, is divided into
data bus DB, address bus AB and control bus CB. It can be connected with
various peripheral devices through the input and output interface circuit.

80

1.4 Mechanics Background
Is being developed

81

Motor & Steering Gear

Motor
According to the type of working power supply, it can be divided into:

1). DC(Direct Current) motor
1.1). Brushless DC motor

1.2). Brushed DC motor
1.2.1). Permanent magnet DC motor
1.2.1.1). Rare Earth permanent magnet DC motor
1.2.1.2). DC Ferrite permanent magnet DC motor
1.2.1.3). Aluminium Nickel-cobalt permanent magnet DC motor
1.2.2). Electromagnetic DC motor
1.2.2.1). DC series motor
1.2.2.2). Shunt DC motor
1.2.2.3). Separately Excited DC motor
2). AC (Alternating Current) motor
2.1). Single-phase motor
2.2). Three-phase motor

82

According to the application, it can be divided into:

Drive motor: Electric tools (including drilling, buffing, polishing, grooving,
cutting, reaming and other tools) motor, household appliances(including
washing machine, electric fan, refrigerator, air conditioner, tape recorder,
video recorder, DCD, vacuum cleaner, camera, hair dryer, electric shaver,
etc.) motor, and other general small mechanical equipment (including all
kinds of small machine tools, small machinery, medical equipment, electronic
instruments, etc.) motor
Control motor:
Stepping motor
Servo motor

Servo Motor

83

The steering gear is actually a servo motor, just like the rudder shaft control in the
model aircraft and other equipment, so these lightweight servo motor is called
steering gear.

Servo Motor

Servo Motor refers to the engine that controls the operation of mechanical
components in the servo system, it is a kind of indirect speed change device for
auxiliary motor.

84

Hardware of myCobot
The hardware of myCobot is composed of electronic parts and mechanical
parts. Electronic parts include PCBA, controller, steering gear, charger, etc..
Structural parts include solid plastic casing, LEGO-mounted ports, flanges,
fastener bearings, etc.

Basic & Atom

The microcontroller of myCobot is mainly composed of BASIC installed at the
base and Atom installed at the end. The reason for the design is to separate the
motion program from the application program, so that users can program and
control myCobot by himself while making it has some real - time performance.

Basic - M5Stack Basic

It is mainly used for the application side of myCobot, which can carry out
Arduino programming, UIFlow programming, communication or various
software defined by users themselves. Basic related programs are open
source for everyone. Check out our GitHub for more information.

ATOM - M5Stack Atom

It is mainly used for the kinematics algorithm control of myCobot, including
forward and inverse kinematics, solution selection, acceleration and
deceleration, speed synchronization, multiple square interpolation, coordinate
transformation, real-time control and multi-threading, etc.. Atom related
programs are not open source yet.

Note: Basic and Atom can communicate with each other through a
communication protocol that is open to all users simultaneously.

85

myCobotElectronic Components

myCobot Electronics

Base（gray shell）
Charging Board PCBA: charging and voltage protection function
PCBA Substrate: control signal conversion function
M5 Basic: main controller
Servo Motor No. 1

Body (white shell)
Servo Motor No. 2-6
Pinboard of Servo Motor

End
M5 Atom：2nd controller

Peripheral -Charger

Structural Parts

Base
Through-Hole
Lego Interface

Body
White plastic shell
Fixed parts, fasteners, bearings, etc

End

86

Output Flange (silver)

DH Parameter & Coordinate System
DH parameter of myCobot is the modified DH parameter, and the specific
parameter values are as follows.

Joint alpha a d theta offset

1 0 0 131.56 theta_1 0

2 PI/2 0 0 theta_2 -PI/2

3 0 -110.4 0 theta_3 0

4 0 -96 66.39 theta_4 -PI/2

5 PI/2 0 73.18 theta_5 PI/2

6 -PI/2 0 43.6 theta_6 0

87

The coordinate system represented by DH parameter of myCobot is as follows.

Maintenance

If there are some problems with your myCobot, you can contact our customer
service for maintenance.

88

BASIC

Description

M5Stack BASIC Kit, like its namesake, is a starter kit among the M5Stack
development kit series. It’s a modular, stackable, scalable, and portable device
which is powered with an ESP-32 core, which makes it open source, low cost, full-
function, and easy for developers to handle new product development on all
stages including circuit design, PCB design, software, mold design and
production. This Basic kit provides a friendly price and full-featured resources
which makes it a good starter kit for you to explore IoT.

If you want to explore the fastest way of IoT prototyping, M5Stack development
board is the perfect solution. Not like others, M5Stack development board is
highly efficient, covered with industrial grade case and ESP32-based
development board. It integrates with Wi-Fi & Bluetooth modules and contains a
dual-core and 16MB of SPI Flash . Together with 30+ M5Stack stackable modules
, 40+ extendable units and different levels of program language, you can create
and verify your IoT product in a very short time.

Supportive development platforms and programming languages: Arduino, Blockly
language with UIFlow, Micropython. Regardless of what level programming skill
you have, M5Stack would guide you in every step of the way to realize your idea
as well as to the final productlization. e If you ever played with ESP8266, you
would realize that ESP32 is a perfect upgrade out of ESP8266. In comparison,
ESP32 has more GPIOs, more analog inputs and two analog outputs, multiple
extra peripherals(like a spare UART). Official developing platform ESP-IDF has
transplanted with FreeRTOS. With dual-core and real time OS you can get more
organized code and much high speed processor.

http://flow.m5stack.com/#/en/core/_blank

89

Pin description of myCobot

Features
ESP32-based
Built-in Speaker, Buttons,Color LCD, Power/Reset button
TF card slot (16G Maximum size)
Magnetic suction at back
Extendable Pins & Holes
M-Bus Socket & Pins
Program Platform: UIFlow, MicroPython, Arduino

Applications
Internet of things terminal controller
Stem education product
DIY creation
Smart home equipment

Parameters

http://flow.m5stack.com/#/en/core/_blank
http://micropython.org/#/en/core/_blank
http://www.arduino.cc/#/en/core/_blank
https://docs.m5stack.com/#/en/core/basic?id=applications

90

Resources Parameter

ESP32 240MHz dual core, 600 DMIPS, 520KB SRAM, Wi-Fi,
dual mode Bluetooth

Flash Memory 16MB

Power Input 5V\@ 500mA

Port TypeC x 1, GROVE(I2C+I/0+UART) x 1

Core Bottom
Port

PIN (G1，G2，G3，G16, G17, G18, G19, G21, G22,
G23, G25, G26, G35, G36)

IPS Screen 2 inch, 320x240 Colorful TFT LCD, ILI9342C, max
brightness 853nit

Button Custom button x 3

Battery 110mAh\@ 3.7V

Antenna 2.4G 3D Antenna

Operating
Temperature 32°F to 104°F (0°C to 40°C)

Net weight 47.2g

Gross weight 93g

Product Size 54 x 54 x 18mm

Package Size 95 x 65 x 25mm

Case Material Plastic (PC)

LCD & TF card
LCD ：320x240 TF card Maximum size 16GB

ESP32
Chip GPIO23 GPIO19 GPIO18 GPIO14 GPIO27

ILI9342C MOSI/MISO / CLK CS DC

TF MOSI MISO CLK

Button

ESP32 Chip GPIO39 GPIO38 GPIO37 GPIO25

Button Pin BUTTON A BUTTON B BUTTON C /

GROVE Port A & IP5306

ESP32 Chip GPIO22 GPIO21 5V GND

GROVE A SCL SDA 5V GND

IP5306 SCL SDA 5V GND

91

IP5306 charging/discharging，Voltage parameter

charging discharging

0.00~ 3.40V -> 0% 4.20~ 4.07V -> 100%

3.40~ 3.61V -> 25% 4.07~ 3.81V -> 75%

3.61~ 3.88V -> 50% 3.81~ 3.55V -> 50%

3.88~ 4.12V -> 75% 3.55~ 3.33V -> 25%

4.12~ / -> 100% 3.33~ 0.00V -> 0%

ESP32 ADC/DAC

ADC1 ADC2 DAC1 DAC2

8 channels 10 channels 2 channels 2 channels

G32-39 G0/2/4/12-15/25-27 G25 G26

Charging current measured value

charging
current

Fully charged
current(Power OFF)

Fully charged
current(Power ON）

0.55A - 0.066A

RelatedLink
Datasheet

ESP32

IP5306

API

Arduino API

pcba

pcba.pdf)

https://docs.m5stack.com/#/en/core/basic?id=related-link
https://m5stack.oss-cn-shenzhen.aliyuncs.com/resource/docs/datasheet/core/esp32_datasheet_cn.pdf
https://m5stack.oss-cn-shenzhen.aliyuncs.com/resource/docs/datasheet/core/IIC_IP5306_REG_V1.4_cn.pdf
https://docs.m5stack.com/#/zh_CN/arduino/arduino_home_page?id=m5core_api
https://m5stack.oss-cn-shenzhen.aliyuncs.com/resource/docs/schematic/Core/M5-Core-Schematic(20171206

92

M5 Stack Atom

Description

ATOM Matrix , which has a size of only 24 * 24mm, is the most compact
development board in the M5Stack development kit series. It provides more GPIO
pins and is very suitable for handy and miniature embedded device development.
The main control adopts the ESP32-PICO-D4 chip, which comes integrated with
Wi-Fi and Bluetooth technologies and has 4MB of integrated SPI flash memory.
The Atom board provides an Infra-Red LED along with the 5 * 5 RGB LED matrix
on the panel, a built-in IMU sensor (MPU6886), and a HY2.0 interface. A general
purpose programmable button is provied below the RGB Led matrix to enable
users to add input support to their various projects. The on-board USB interface
(Type-C) enables rapid program uploading and execution. One M2 screw hole is
provided on the back for mounting the board.

Note: When using FastLED lib, the recommended brightness of RGB LED is 20.
Please do not set it to a high brightness value to avoid damage to the LED and
acrylic screen. (In ATOM lib, we have mapped its appropriate brightness range to
0~100)

Product Features

93

ESP32 PICO-based
Programmable button
5 * 5 RGB LED matrix panel(WS2812C)
Buitl-in Infra-red LED
Built-in MPU6886 Inertial Sensor
Extendable Pins & Holes
Program Platform:Arduino,UIFlow

Applications
Internet of things terminal controller
IoT node
Wearable peripherals

Specification

Resources Parameter

ESP32 240MHz dual core, 600 DMIPS, 520KB SRAM, Wi-Fi,
dual mode Bluetooth

Flash 4MB

Power Input 5V\@ 500mA

Port TypeC x 1, GROVE(I2C+I/0+UART) x 1

PIN Port G19, G21，G22，G23，G25, G33

RGB LED WS2812C 2020 x 25

MEMS MPU6886

IR Infrared transmission

Button Custom button x 1

Antenna 2.4G 3D Antenna

Operating
Temperature 32°F to 104°F (0°C to 40°C)

Net weight 3g

Gross weight 14g

Product Size 24*24*14mm

Package Size 43*43*20mm

Case Material Plastic (PC)

http://www.arduino.cc/#/en/core/_blank
http://flow.m5stack.com/#/en/core/_blank
https://docs.m5stack.com/#/en/core/basic?id=applications

94

3.4 Motors and Servos
Specification

Specification Parameter

Dimension 45.2X24.7X35mm

Locked-rotor
torque 19.5 kg·cm\@ 7.4V

Locked-rotor speed 52RPM\@7.4V

Feedback Load/position/speed/voltage/current/temperature

Electronic
protection

Overheat/overcurrent/overvoltage/overload
protection

Structure Feature

The shell adopts engineering plastic shell with higher strength, which
optimizes the center point alignment distance and makes the overall structure
more compact.
Steering gear adopts 1:345 copper tooth combination,which makes greater
torque.
Under the condition of the same torque, it will appear shorter (5mm) than the
size of the standard steering gear.
The body adopts double-axis structure design, round lining three-dimensional
structure characteristics with metal main and auxiliary steering wheel and
double wire wiring, suitable for quadruped robot, snake robot, desktop robot,
humanoid robot, mechanical arm applications.

Electric Control Function

Acceleration Start & StopSpeed and acceleration can be set, the
movement is better and softer.

High Precision

360-degree absolute position 4096 bit accuracy, the highest position
resolves 0.088 degrees. If you control 90 degrees, input 4096/36090=1024;
if you control 180 degrees, input 4096/360180=2048; the rest can be done
in the same manner .

Working Modes

Mode 0: Location mode, which is the default one. 360 degree absolute Angle
control can be achieved in this mode and. Support acceleration motion.

Mode 1: Speed closed loop. In the programming interface, the operation
mode is set to 1, you can switch to speed closed loop mode, and enter the
corresponding speed under the speed bar to run.

95

Mode 2: Speed open loop, in the programming interface, the operation mode
is set to 2, you can switch to speed open loop mode, and enter the
corresponding time under the time bar to run.

A key to Calibrate

Install in any position with 360°Angle, {enter 128 (decimal) at address
number 40 (decimal)} calibrate the current position to the center with one

96

Learn Structure and fixation of
myCobot

How to fix myCobot
The actual weight of myCobot collaborative robot is 850g. Considering the
movement of the robot, the center of gravity will move as the robot moves.
Therefore, the robot needs to be fixed on a solid base to be used normally.

Common Fix: myCobot There are two common ways to fix myCobot:

1 Secure the lego connector on the base with lego interface.
types of bases: Flap Base and G Base, you can find them in myCobot’s
peripheral base. myCobot Support
Use 4 screws to pass through myCobot base, secure to a threaded base.
The position of the 4 screw holes on the base can be referenced in the
myCobot screw position diagram below.

Interface size of robot base
The pedestal fixing hole is the interface that fixes the robot to other bases or
planes. The specific hole size is shown as following. It is 4 through holes with a
diameter of 4.5mm, which can be fixed with M4 bolts.

97

Make sure that there is a corresponding threaded hole on the fixed base before
installing. Before you officially install, please confirm:

The environment to be installed complies with the requirements above.
The installation position is not less than the working range of the robot, and
there is enough space for installation, use, maintenance and repair.
Place the stand in the proper position.
Installation related tools are ready, such as screws, wrenches, etc.

After confirming the above, move the robot to the mounting surface of the base,
adjust the position of the robot, and align the fixing hole of the robot base with the
hole on the mounting surface of the base.

Note: When adjusting the position of the robot on the mounting base, please
avoid pushing the robot directly on the mounting surface of the base to avoid
scratches. When manually moving the robot, please try to avoid applying external
force to the weak part of the robot body to avoid unnecessary damage to the
robot.

End assembly diagram

98

The end of the robot arm is compatible with both lego connector holes and screw
threaded holes.

MyCobot Urdf Mode

99

myStudio
The design of myStudio

myStudio is a one-stop platform for robots of myRobot/myCobot.
It is convenient for users to choose different firmware and download it
according to their own usage scenarios, and learn relevant textbooks and
videos.

Supported platforms and versions

Version 1.2
windows, mac, linux

The main functions

Update the firmware;
Provide video tutorials on how to use the robot;
Provide maintenance and repair information (such as video tutorials, Q&A,
etc.).

Select your use purpose
Please download different PC, BASIC firmware and Atom firmware depending on
your development environment.

100

101

Download and Loading myStudio

Download myStudio
myStudio https://github.com/elephantrobotics/myStudio

Select the latest version

Then select different versions for different systems

https://github.com/elephantrobotics/myStudio

102

Note: Don’ t install in a folder with a space directory.

Download Basic & Atom

Burn Basic
First, connect the BASIC development board with USB, the connection
window of myStudio will display the connected development board, select
and click “Connect”

103

Then there are the basic-related firmware in the Basic and tools. Select the
firmware you want to burn, and click to burn

104

Burn Atom
Burn Atom is same as Burn Basic, withUSB connection at the end of the
Atom
ATOM can be selected in the Board, firmware of Atom will appear
There is only one firmware of Atom, click to burn

Usage of myStudio
https://www.bilibili.com/video/BV1Qr4y1N7B5/

Q&A
Q: When you click on the Tools it will be stuck in the side bar for the first time?

A: Please make sure your network status is good.

https://www.bilibili.com/video/BV1Qr4y1N7B5/

105

Software Platform & API
Before developing, make sure that the Basic and Atom in your myCobot are using
the latest firmware and suitable for your environment.

You can update the firmware through MyStudio

We currently support the development of the following API

Arduino

Suitable for maker development, you can use all kinds of Arduino program
library.

uiFlow

Suitable for beginners to develop, based on Visual programming, can be
adapted to the full M5 education kit.

python

Suitable for users with a certain level of Python development.Based on
python3.

ROS&MoveIt

Suitable for professional development, can undertake the simulation and
calculation of mechanical arm, trajectory planning, etc.

roboFlow

Suitable for industrial development, It is an industrial oriented operating
system launched by Elephant Robot, adapted all series of robotic arms of
Elephant Robot

Communication Protocols and Messages

Suitable for serial port development, can directly communicate by sending
message

In addition, we are also developing C# and other software interface API for
development.

file:///C:/Users/xxx/AppData/Local/Temp/calibre_jff2cc_z/wo5uwjlu_pdf_out/4-ROS&Moveit.md

106

107

Arduino

1.Preparation before development

1.1 Connected Device

Connect the Basic on the base of myCobot with PC terminal by Tyep-C data
line

1.2 Requirement

ATOM：Burn the latest version of ATOMMain(At least 2.7 Version)
Basic：None

1.3 Check for Connection

After connecetion with computer, open device manager to check if there is a
device
If the device is not detected, please replace the USB cable. If it indicates that
the device cannot be used, please install and download CP210X . After
downloading, unzip it and install the required version of driver.

open Arduino IDE -> tools -> port to check if there is a device. If the device is
not detected, please replace the USB cable to test, or test whether the driver
has been installed successfully

2.Start development

2.1 Burn an offcial demo

Open Arduino IDE,select ->file-> Examples-> mycobotbasic, then you can
see all Examples about myCobot
Burn an demo->SetRGB.ino.

https://github.com/elephantrobotics/myCobot/releases/download/0/default.zip

108

Open SetRGB from Examples

Select the development board: M5Stack-Core-ESP32and COM

Click to download

Wait until the bottom right shows upload success, which means that the
application has been downloaded

109

Then you'll see the Atom screen loop with red, green and blue lights

110

Arduino API

1. Overall Status
 powerOn();

Function: atom power on（open by default）
Return Value: none

 powerOff();

Function: atom power off
Return Value: none

 isPoweredOn();

Function: atom status inquiry, return Atom link status
Return Value: power on is TRUE, power off is FALSE

 setFreeMove();

Function: All joints close torsion output
Return Value: none

2. MDI Mode and Robot Control (Manual
Data Input)
 getAngles();

Function: Read all joint angles, when used one Angles should be defined to
receive data that was read. Angles are defined in terms of variables or
functions built into library functions. We can define a memory space that is 6
angles to store Angle variables, it is used in the same way as arrays.
Return Value: Angles type of array

 writeAngle(int joint, float value, int speed);

Function: Send a single joint Angle
Parameter Specification：
Joint Number= joint, range from 1 to 6 Specified Angle Value= value, range
approximately from -160°~ + 160° Specified Speed= value, range from 0~100
Return Value: none

 writeAngles(Angles angles, int speed);

Function: Synchronize joint angles, send joint angles at the same time.
Specified Angles is a container with a capacity of 6 data, can be viewed as
an array. Use a for loop to assign values, or assign values separately.
Angles[0] = Specified Angle, Angles[2] = Specify Angle,range from 0 – 90
(the value range should be the same as writeAngle) unit°
Movement Speed = speed, range from 0 – 100 unit°
Return Value: none

111

 getCoords();

Function: Read x,y,z,rx,ry,rz of the end of myCobot, a Coords tempcoords
should be defined when used to received angles that was read. Coords are
defined in terms of variables or functions built into library functions. We can
define a memory space that is 6 tempcoords to store Angle variables, it is
used in the same way as arrays.
Return Value: An array of type Coords. You need to define variables of type
Coords.

 isInPosition (Coords coord,bool is_linear);

Function：Read x, y, z, rx, ry, rz at the end of the current robot arm to test
whether the specified point has been reached, you should define a Coords
tempcoords to receive the read angle when you use it. Coords is a variable
number or function definition of a library function that defines a storage space
of 6 memory, tempcoords, which is used in the same way as an array.
Return value：An array under the Coords type that needs to define variables
of the Coords type

 writeCoord(Axis axis, float value, int speed);

Function: Send the specific value of the individual coordinate parameters
x/y/z, the ends are going to move in a single direction.
Parameter Specification:

Value of Moving Path Coordinate = value range from -300 – 300 (The position
coordinates of axis=Axis::X,aixs=Axis::Y and axis=Axis::Z are respectively X,Y,Z,
the units would be mm. Position coordinate value range is not uniform,
axis=Axis::RX, aixs=Axis::RY and axis=Axis::RZ are respectively RX,RY,RZ
ranging from-180°~180°, if the value is beyond the range it will return the clue
“inverse kinematics no solution”)
Specified Speed = speed range from 0~100 unit %

Return Value: none

 writeCoords(Coords coords, int speed);

Function: Send the specified coordinate parameter, the type of parameter is
Coords, need to declares a variable of type COORDS, it is used in the same
way as arrays.
Parameter Specification
coords[0] = X, coords[1] = Y, coords[2] = Z,
X,Y,Z range from -300-300.00 (Value range is not defined. If the value is
beyond the range, the clue ”inverse kinematics no solution” will be given)
unit mm
RX,RY,RZ range from -180~180
Specified Speed = speed, range from 0~100unit %
Return Value: none

 checkRunning();

Function: Check whether the equipment is in motion
Return Value: In motion is TRUE，on the contrary it’s FALSE

 setEncoder(int joint, int encoder);

112

Function: Set a single joint to rotate to a specified potential vaule
Parameter Specification:
Joint Number = joint, range from 1-6
Potential Vaule of Servo Motor = encoder, range from 0-4096 (The range
should be positively related to the range of each joint)
Return Value: none

 getEncoder(int joint);

Function: Get the specified joint potential vaule
Parameter Specification: Servo Motor Number = joint range from 1-6
Return Value: int type, range from 0-4096

 setEncoders(Angles angleEncoders, int speed);

Function: Set the six joints to run synchronously to the specified position
Parameter Specification: Need to define a variableof type Angles:
angleEncoders, it is used in the same way as arrays. Assign a value to the
array angleEncoders, values range from 0 to 4096 (The range should be
positively related to the range of each joint) , the length range of the array is
6. Specified Speed = speed, range from 0~100unit %
Return Value: none

3. JOG Mode
 jogAngle(int joint, int direction, int speed);

Function: Control the movement of a single joint in one direction
Parameter Specification:
Joint/Servo Motor

Number = joint, range from 1-6
Direction of Joint Motion = Direction, range from -1/1
Specified Speed = speed, range from 0~100unit %

Return Value: none

 jogCoord(Axis axis, int direction, int speed);

Function: Control myCobot moves in one direction in Cartesian space
Parameter Specification:

Direction Selection = axis, range from X,Y,Z,RX,RY,RZ
Direction of Joint Motion = Direction, range from -1/1
Specified Speed = speed, range from 0~100unit %

Return Value: none

 jogStop();

Function: Stops the specified direction of motion that has started
Return Value: none

 pause();

Function: Program pause
Return Value:none

 resume();

113

Function: Program continues to run
Return Value: none

 stop();

Function: Program stop
Return Value: none

4. Running Status and Settings
 getSpeed();

Function: read the current running speed
Return Value: int tape, range from 0-100, unit %

 setSpeed(int percentage);

Function: set the running speed
Parameter Specification: percentage, range from 0-100, unit %

 getFeedOverride(); (Not open at this time)

Function: read FeedOverride
Return Value: float type of the array

 sendFeedOverride(float feedOverride); （Not open at this time）

Function: send FeedOverride

 getAcceleration(); （Not open at this time）

Function: read acceleration
Return Value: floattype of the array

 setAcceleration(float acceleration); （Not open at this time）

Function: set acceleration
Parameter Specification: acceleration range from 0-100 (Value range is not
defined)

 getJointMin(int joint);

Function: read the joint minimal limit Angle
Parameter Specification: Joint Number = joint, range from 1-6
Return Value: float type of the array

 getJointMax(int joint);

Function: read the joint maximal limit Angle
Parameter Specification: Joint Number = joint, range from 1-6
Return Value: float type of the array

 setJointMin(int joint, float angle);

Function: set the joint minimal limit Angle
Parameter Specification: joint/servo motor number = joint, range from 1-6
Return Value: none

 setJointMax(int joint, float angle);

114

Function: set the joint maximal limit Angle
Parameter Specification: joint/servo motor number = joint, range from 1-6
Return Value: none

5. Joint Servo Control
 isServoEnabled(int joint);

Function: Check whether the joint is properly connected
Parameter Specification: Joint Number = joint, range from 1-6
Return Value: Normal links return TRUE, on the contrary return FALSE

 isAllServoEnabled();

Function: Check whether all joins are properly connected
Return Value: Normal links return TRUE, on the contrary return FALSE

 getServoData(int joint, byte data_id);

Function: Read the data of the specified address of joint
Parameter Specification:

Joint Number = joint, range from 1-6
Data Address = data_id. , refer to the following Figure for address

Return Value: refer to the following Figure for the value range

 setServoCalibration(int joint);

Function: Calibrate the current position of the joint to zero Angle, the
corresponding potential value is 2048
Parameter Specification: joint number = joint, range from 1 – 6

 jointBrake();

Function: brake a single stand-alone
Parameter Specification: joint number = joint, range from 1 – 6

 setPinMode(byte pin_no, byte pin_mode);

Function: set atom specified pin mode
Parameter Specification:

Pin Number = pin_no, range from:19, 22, 23, 26, 32, 33
Pin mode = pin_mode, range from:0, 1

Return Value: none

6. Atom IO Control
 setLEDRGB(byte r, byte g, byte b);

Function:set the color of the RGB lights of atom
Parameter Specification:

Parameter of Red Light = r, range from 0x00 – 0xFF;
Parameter of Green Light = g, range from 0x00 – 0xFF;
Parameter of Blue Light = b, range from 0x00 – 0xFF;

Return Value: none

115

 setGripper(int data);

Function: Set the jaw opening and closing
Parameter Specification: data 0 is open, 1 is close`

7. Coordinate Control Mode
 setToolReference(Coords coords);

Function: set coordinate system of tool
Parameter Specification:

X,Y,Z range from -300-300.00 (Value range is not defined. If the value is
beyond the range, the clue ”inverse kinematics no solution” will be given
) unit mm
RX,RY,RZ range from -180~180

Value: none

 setWorldReference(Coords coords);

Function: set coordinate system of world
Parameter Specification:

X,Y,Z range from -300-300.00 (Value range is not defined. If the value is
beyond the range, the clue ”inverse kinematics no solution” will be given
) unit mm
RX,RY,RZ range from -180~180

Return Value: none

 getToolReference();

Function: get coordinate system of tool
Parameter Specification: none
Return Value:

X,Y,Z range from -300-300.00 (Value range is not defined. If the value is
beyond the range, the clue ”inverse kinematics no solution” will be given
) unit mm
RX,RY,RZ range from -180~180

 getWorldReference();

Function: get coordinate system of world
Parameter Specification: none
Return Value:

X,Y,Z range from -300-300.00 (Value range is not defined. If the value is
beyond the range, the clue ”inverse kinematics no solution” will be given
) unit mm
RX,RY,RZ range from -180~180

 setReferenceFrame(RFType rftype);

Function: set coordinate system of frame
Parameter Specification: RFType::BASE takes the robot base as the base
coordinate, RFType::WORLD takes the
world/Youdao/Dict/8.9.6.0/resultui/html/index.html#/javascript:;)
coordinate/Youdao/Dict/8.9.6.0/resultui/html/index.html#/javascript:;)

file:///D:/Program%20Files%20(x86
file:///D:/Program%20Files%20(x86

116

system/Youdao/Dict/8.9.6.0/resultui/html/index.html#/javascript:;) as the base
coordinate
Return Value: none

 getReferenceFrame();

Function：get coordinate system of flange
Parameter Specification: none
Return Value:
X,Y,Z range from -300-300.00 (Value range is not defined. If the value is
beyond the range, the clue ”inverse kinematics no solution” will be given)
unit mm

RX,RY,RZ range from -180~180

 setEndType(EndType end_type)

Function: set coordinate system of the end
Parameter Specification: EndType::FLANGE set the end as flange,
EndType::TOOL set the end to the tool end
Return Value: none

 getEndType();

Function: get coordinate system of the end
Parameter Specification: none
Return Value:

X,Y,Z range from -300-300.00 (Value range is not defined. If the value is
beyond the range, the clue ”inverse kinematics no solution” will be given
) unit mm
RX,RY,RZ range from -180~180

 setGripperValue();

Function: Set the electric potential of the gripper. Get the current electric
potential of the gripper before use
Parameter Specification: Input Value (0-4095)
Return Value: none

 setGripperIni();

Function: Set the gripperbe .zero
Parameter Specification: none
Return Value: none

 getGripperValue();

Function: get the value of the current electric potential
Parameter Specification: none
Return Value: return the value of the current electric potential, range from0-
4085

 setGripperState;

Function: Set the opening and closing of the gripper
Parameter Specification: 0 represents open,1 represents clsoe
Return Value: none

file:///D:/Program%20Files%20(x86

117

 setDigitalOutput;

Function: Set the working state of IO pins
Parameter Specification: 0 input; 1 output; 2 pull_up_input
Return Value: none

 getDitialInput;

Function: Read input
Parameter Specification: none
Return Value: none

 setPWMOutput(byte pin_no, int freq, byte pin_write);

Function：Set the PWM signal of the ATOM end IO output that specifies the
duty-through ratio
Parameter description： pin_no：IO serial number freq： clock frequency
pin_write：ratio: 0 ~ 256;128 indicates 50%.
Return value：none

118

Test Program

Functional Specification
Burn the connect-test firmware, which can detect the connection of the device,
and the Basic screen will show the linked device

Requirement
Use MyStudio Basic -> connect-test

Use MyStudio Atom -> AtomMain

Flow Chart
Burn AtomMain for Atom
Burn connect-test for Basic

Press Button C：

file:///C:/Users/xxx/AppData/Local/Temp/calibre_jff2cc_z/wo5uwjlu_pdf_out/2-preparation/3-myStudio/3.1-myStudio_download.md
file:///C:/Users/xxx/AppData/Local/Temp/calibre_jff2cc_z/wo5uwjlu_pdf_out/2-preparation/3-myStudio/3.1-myStudio_download.md

119

If there is any problem：

120

5.2 UIFlow
Press the web URL of uiFlow :https://flow.m5stack.com/https://flow.m5stack.com/

Operate as shown below/

Then you can start programming

Make the Atom screen green and adjust the angles of the six joints as shown in
the figure

https://flow.m5stack.com/
https://flow.m5stack.com/

121

122

5.3 Python
Programming in Python Environment

Identify development goals
PyMycobot is a Python package that communicates with myCobot on a
serial port. It supports Python2, Python3.5 and later versions..

If you want to control myCobot by programming in Python, that is your choice.

How to install and use
Before using PyMycobot, make sure you have a myCobot and have it ready.

Pre-preparation:

Make sure the top Atom burns into Atom and the bottom BASIC burns into
Transponder.

The firmware Atom and Transponder download address:
https://github.com/elephantrobotics/myCobot/tree/main/Software

Pip

pip install pymycobot --upgrade --user

Notes:

Only Atom2.6 and later versions are currently supported; if you are using
previous versions, please install PyMycobot 1.0.7.

pip install pymycobot==1.0.7 --user

Installing from Source

git clone https://github.com/elephantrobotics/pymycobot.git <your-path>
cd <your-path>/pymycobot
Install
python2 setup.py install
or
python3 setup.py install

API serves as a secondary directory

If you don't want to install it, you can use it.First, you need to go to GitHub and
download it locally.

https://github.com/elephantrobotics/myCobot/tree/main/Software

123

Download Path：https://github.com/elephantrobotics/pymycobot

Then, put the Pymycobot file in your project so that you can import it and use it.

https://github.com/elephantrobotics/pymycobot

124

pymycobot API
Class:

MyCobot
Overall status
MDI mode and operation
JOG mode and operation
Running status and Settings
Servo control
Atom IO

Angle
Coord

MyCobot

from pymycobot.mycobot import MyCobot

Note: If no parameter is given, there is no parameter; if no return value is
given, there is no return value

Overall status

power_on()

Description: Robot arm power up.

power_off()

Description: Robot arm power down.

is_power_on()

Description: Adjust robot arm whether power on.

Returns

 1 : power on
 0 : power off
 -1 : error

set_free_mode()

Description: Set robot arm into free moving mode.

125

MDI mode and operation

get_angles()

Description: Get the degree of all joints.

Returns: list : A float list of all degree.

send_angle()

Description: Send one degree of joint to robot arm.

Parameters

 id : Joint id(genre.Angle)
 degree : degree value(float)
 speed : (int) 0 ~ 100

Example

from pymycobot.mycobot import MyCobot
from pymycobot.genre import Angle

mycobot = MyCobot('/dev/ttyUSB0')
mycobot.send_angle(Angle.J2.value, 10, 50)

send_angles()

Description: Send the degrees of all joints to robot arm.

Parameters

 degrees : a list of degree value(List[float])

 speed : (int)

Example

from pymycobot.mycobot import MyCobot
from pymycobot.genre import Angle

mycobot = MyCobot('/dev/ttyUSB0')
mycobot.send_angles([0,0,0,0,0,0], 80)

get_radians()

Description: Get the radians of all joints.

Returns: list : A float list of radian.

send_radians()

Description: Send the radians of all joint to robot arm.

Parameters:

126

 degrees : a list of radian value(List[float])
 speed : (int) 0 ~ 100

Example

from pymycobot.mycobot import MyCobot
from pymycobot.genre import Angle

mycobot = MyCobot('/dev/ttyUSB0')
mycobot.send_angles_by_radian([1,1,1,1,1,1], 70)

get_coords()

Description: Get the Coords from robot arm, coordinate system based on
base.

Returns: list : A float list of coord - [x, y, z, rx, ry, rz]

send_coord()

Description: Send one coord to robot arm.

Parameters

 id : coord id(genre.Coord)
 coord : coord value(float)
 speed : (int) 0 ~ 100

Example

from pymycobot.mycobot import MyCobot
from pymycobot.genre import Coord

mycobot = MyCobot('/dev/ttyUSB0')
mycobot.send_coord(Coord.X.value, -40, 70)

send_coords()

Description: Send all coords to robot arm.

Parameters

 coords : a list of coords value(List[float])
 speed : (int) 0 ~ 100
 mode : (int): 0 - angluar, 1 - linear

Example

from pymycobot.mycobot import MyCobot
from pymycobot.genre import Coord

mycobot = MyCobot('/dev/ttyUSB0')
mycobot.send_coords([160, 160, 160, 0, 0, 0], 70, 0)

sync_send_angles()

127

Description: Send the angle in synchronous state and return when the target
point is reached

Parameters

 id : Joint id(genre.Angle)
 degree : degree value(float)
 speed : (int) 0 ~ 100

sync_send_coords()

Description: Send the coord in synchronous state and return when the target
point is reached

Parameters

 coords : a list of coords value(List[float])
 speed : (int) 0 ~ 100
 mode : (int): 0 - angluar, 1 - linear

pause()

Description: Pause movement.

resume()

Description: Recovery movement.

stop()

Description: Stop moving.

is_paused()

Description: Judge whether the manipulator pauses or not.

Returns :

 1 - paused
 0 - not paused
 -1 - error

is_in_position()

Description: Judge whether in the position.

Parameters

 data : A data list, angles or coords.
 flag : Tag the data type, 0 - angles, 1 - coords.

Returns

 1 - true
 0 - false

128

 -1 - error

JOG mode and operation

jog_angle()

Description: Jog control angle

Parameters

 joint_id : (int) 1 ~ 6
 direction : 0 - decrease, 1 - increase
 speed : 0 ~ 100

jog_coord()

Description: Jog control coord.

Parameters

 coord_id : (int) 1 ~ 6
 direction : 0 - decrease, 1 - increase
 speed : 0 ~ 100

jog_stop()

Description: Stop jog moving.

Running status and Settings

get_speed()

Description: Get speed.

Returns: speed: (int)

set_speed()

Description: Set speed.

Parameters: speed: (int) 0 ~ 100

get_joint_min_angle()

Description: Gets the minimum movement angle of the specified joint

Parameters: joint_id : (int)

Returns: angle value (float)

get_joint_max_angle()

129

Description: Gets the maximum movement angle of the specified joint

Parameters: joint_id : (int)

Returns: angle value (float)

Servo control

is_servo_enable()

Description: Determine whether all steering gears are connected

Parameters: servo_id (int) 1 ~ 6

Returns

 0 : disable
 1 : enbale
 -1 : error

is_all_servo_enable()

Description: Determine whether the specified steering gear is connected

Returns

 0 : disable
 1 : enbale
 -1 : error

release_servo()

Description: Power off designated servo

Parameters: servo_id : 1 ~ 6

focus_servo()

Description: Power on designated servo

Parameters: servo_id : 1 ~ 6

Atom IO

set_color()

Description: Set the color of the light on the top of the robot arm.

Parameters

 r : 0 ~ 255
 g : 0 ~ 255
 b : 0 ~ 255

130

set_pin_mode()

Parameters

 pin_no (int):
 pin_mode (int): 0 - input, 1 - output, 2 - input_pullup

set_digital_output()

Parameters

 pin_no (int):
 pin_signal (int): 0 / 1

get_digital_input()

Parameters: pin_no (int)

Return: signal value

get_gripper_value()

Description: Get gripper value

Return: gripper value (int)

set_gripper_state()

Description: Set gripper switch state

Parameters

 flag (int): 0 - open, 1 - close
 speed (int): 0 ~ 100

set_gripper_value()

Description: Set gripper value

Parameters

 value (int): 0 ~ 4096
 speed (int): 0 ~ 100

set_gripper_ini()

Description: Set the current position to zero, set current position value is
 2048 .

is_gripper_moving()

Description: Judge whether the gripper is moving or not

Returns

131

 0 : not moving
 1 : is moving
 -1 : error data

Angle

from pymycobot.genre import Angle

Description

Instance class of joint. It's recommended to use this class to select joint.

Coord

from pymycobot.genre import Coord

Description

Instance class of coord. It's recommended to use this class to select coord.

132

ROS Introduction
ROS is abbreviation of Robot Operating System. ROS is a highly flexible software
architecture for writing robotic software programs.

ROS icon：

ROS is open source, a post-operating system, or secondary operating system for
robot control. It provides features similar to those provided by the operating
system, including hardware abstract descriptions, underlying driver management,
execution of common functionality, inter-program messaging, and package
management, as well as tool programs and libraries for acquiring, building,
writing, and running multi-machine integrated programs.

ROS's primary design goal is to increase code reuse in the field of robotics
development. ROS is a framework of distributed processes (or "nodes") that are
encapsulated in packages and feature packs that are easy to share and publish.
ROS also supports a joint system similar to a code repository, which can also
enable engineering collaboration and release. This design enables the
development of an engineering implementation to make completely independent
decisions (without ROS restrictions) from the file system to the user interface. At
the same time, all projects can be integrated with the basic tools of ROS.

MoveIt Introduction
Moveit! is the most advanced software for robotic arm movement operations and
is used on more than 100 robots. It combines the latest results in motion planning,
control, 3D perception, operations control, control and navigation, provides an
easy-to-use platform for developing advanced robotics applications, and provides
an integrated software platform for the design and evaluation of new robot
products in industrial, commercial and research and development fields.

Moveit icon：

133

Basic development environments require the installation of robotic operating
systems ROS, MoveIt, and git version managers, which are described below.

ROS Installation

1.Choose version
ROS has a one-to-one relationship with ubuntu, and different versions of ubuntu
correspond to different versions of ROS, the website
below:http://wiki.ros.org/Distributions

If the version is different, the download will fail. The system we selected here is
Ubuntu 16.04, corresponding to ros version ROS Kinetic Kame.

2.Begin installation

2.1.Add source

There are no ROS software sources in the list of Ubuntu's own software sources,
so you need to configure the ROS software source into the software list repository
first, then you can download ROS and open a console
terminalCtrl+Alt+T),Enter the following instructions：

The results are as follows (the user password is required here, just enter the user
password set when Ubuntu is installed)

2.2.Set the key

Configure the public network key, this step is to let the system confirm that our
path is safe, so that download file is no problem, otherwise the download will be
deleted immediately:

The results of the execution are as follows:

sudo sh -c 'echo "deb http://packages.ros.org/ros/ubuntu $(lsb_release -sc) main" > /e

sudo apt-key adv --keyserver 'hkp://keyserver.ubuntu.com:80' --recv-key C1CF6E31E6BADE

http://wiki.ros.org/Distributions

134

2.3.installation

After adding a new software source, update the list of software sources:

sudo apt-get update

install ROS：

sudo apt-get install ros-kinetic-desktop-full

It is recommended to install a complete ROS to prevent the loss of libraries and
dependencies.

The installation process takes a long time and requires patience

2.4.Configure the ROS environment to the system

rosdep allows you to easily install the source code that you want to compile, or be
dependent on some system that the ROS core components,need, and execute
the following commands in turn at the terminal. Initialize rosdep：

sudo rosdep init

rosdep update

Once initialization is complete, in order to avoid having to re-take effect on the
ROS functional path after each shutdown of the terminal window, we can
configure the path into the environment variable so that the ROS functional path
automatically takes effect each time a new terminal is opened. At the terminal, the
following commands are executed in turn:

Bash

echo "source /opt/ros/kinetic/setup.bash" >> ~/.bashrc
source ~/.bashrc

Zsh

echo "source /opt/ros/kinetic/setup.bash" >> ~/.zshrc
source ~/.zshrc

2.5.Install the ROS extra dependence

Enter the following command at the terminal：

sudo apt-get install python-rosinstall python-rosinstall-generator python-wstool build

135

3.Verify and installation
The start-up of the ROS system requires a ROS Master, the node manager, and
we can enter the roscore instruction at the terminal to start the ROS Maste, to
verify that the ROS was installed successfully, the following commands are
executed at the terminal:

roscore

When the following interface is displayed, means the ROS installation is
successful

For more detailed installation instructions, you can refer to the official installation
instructions，website: http://wiki.ros.org/ROS/Installation

MoveIt Installation
MoveIt is the component of a series of mobile operations in ros, including motion
planning, collision detection, kinematics, 3D awareness, operation control and
other functions.

1.Update the list of software sources
Enter the following command in the terminal window to update the list of software
sources:

sudo apt-get update

2.Install MoveIt
Enter the following command in the terminal window to perform the installation of
MoveIt:

http://wiki.ros.org/ROS/Installation

136

sudo apt-get install ros-kinetic-moveit

git installation

1.Add a software source
Add the git-installed software source to the list of ubuntu's software sources and
enter the following command in the terminal window:

sudo add-apt-repository ppa:git-core/ppa

You need clickEnter manually to continue.

2.Update the list of software sources
Enter the following command in the terminal window to update the list of software
sources:

sudo apt-get update

3.Install git
Enter the following command in the terminal window to perform the installation of
git:

sudo apt-get install git

4.Verify and installation

137

Read git version, Enter the following command in the terminal window:

git --version

The git version number can be displayed in the terminal, as follows, for a
successful installation.

138

Introduction
 mycobot_ros is from ElephantRobotics, fits its desktop six-axis robotic arm
mycobot.

The project address：http://github.com/elephantrobotics/mycobot_ros

Installation
NOTE：

This package relies on ROS and MoveIT. Ensure a successful installation of
ROS and MoveIT before use.
The interaction of this package with the real robot arm is depend on
PythonApi - pymycobot
The project site of Api is：https://github.com/elephantrobotics/pymycobot
Fast installation： pip install pymycobot --upgrade

The way you install it depends on Git, make sure Git is installed on your
computer.

The following text will refer to the ROS workspace path in your computer with
 <ros-workspace> , and make sure that you replace <ros-workspace> with your
native's real path when you execute the following command.

cd <ros-workspace>/src
git clone https://github.com/elephantrobotics/mycobot_ros.git
cd ..
catkin_make
source <ros-workspace>/devel/setup.bash

file:///C:/Users/xxx/AppData/Local/Temp/calibre_jff2cc_z/wo5uwjlu_pdf_out/2-install_ros_package.html
https://github.com/elephantrobotics/pymycobot

139

Slider control
Open a command line and run：

roslaunch mycobot_ros mycobot_slider.launch

It will open the rviz and a slider assembly, and you'll see as the following:

You can then control the movement of the model in the rviz by dragging the slider.
If you want the real mycobot to move with you, you need to open another
command line and run:

rosrun mycobot_ros slider_control.py
#or
rosrun mycobot_ros slider_control.py _port:=/dev/ttyUSB0 _baud:=115200

It publishes the angle to mycobot in real time. The script supports the setting of
port numbers and baud rates, with defaults of "/dev/ttyUSB0" and 115200 。

Model follow
In addition to the controls above, we can also allow the model to follow the real
robot arm movement. Open a command line to run:

rosrun mycobot_ros follow_display.py
#or
rosrun mycobot_ros follow_display.py _port:=/dev/ttyUSB0 _baud:=115200

It will release the angle of the real robotic arm. The script supports setting port
numbers and baud rates, which are defaulted to "/dev/ttyUSB0" 和 115200 。

Then open another command line and run:

roslaunch mycobot_ros mycobot_follow.launch

140

It opens the rviz display model to follow the effect.

141

Keyboard control
Keyboard control was added to the mycobot_ros package and synchronized in real
time in rviz. This function relies on pythonApi, so make sure to connect to the real
robot arm.

Open a command line and run：

Due to the need for real robotic arm communication, the launch supports the
setting of port numbers and Baud rates, which default to "/dev/ttyUSB0" and
 115200 .

The running resullts are as follows:

The information of myCobot is output from the command line as follows:

roslaunch mycobot_ros mycobot_teleop_keyboard.launch
#or
roslaunch mycobot_ros mycobot_teleop_keyboard.launch port:=/dev/ttyUSB0 baud:=115200

142

SUMMARY
========

PARAMETERS
 * /mycobot_services/baud: 115200
 * /mycobot_services/port: /dev/ttyUSB0
 * /robot_description: <?xml version="1....
 * /rosdistro: kinetic
 * /rosversion: 1.12.17

NODES
 /
 mycobot_services (mycobot_ros/mycobot_services.py)
 real_listener (mycobot_ros/listen_real.py)
 robot_state_publisher (robot_state_publisher/state_publisher)
 rviz (rviz/rviz)

auto-starting new master
process[master]: started with pid [1333]
ROS_MASTER_URI=http://localhost:11311

setting /run_id to f977b3f4-b3a9-11eb-b0c8-d0c63728b379
process[rosout-1]: started with pid [1349]
started core service [/rosout]
process[robot_state_publisher-2]: started with pid [1357]
process[rviz-3]: started with pid [1367]
process[mycobot_services-4]: started with pid [1380]
process[real_listener-5]: started with pid [1395]
[INFO] [1620882819.196217]: start ...
[INFO] [1620882819.205050]: /dev/ttyUSB0,115200

MyCobot Status

Joint Limit:
 joint 1: -170 ~ +170
 joint 2: -170 ~ +170
 joint 3: -170 ~ +170
 joint 4: -170 ~ +170
 joint 5: -170 ~ +170
 joint 6: -180 ~ +180

Connect Status: True

Servo Infomation: all connected

Servo Temperature: unknown

Atom Version: unknown

[INFO] [1620882819.435778]: ready

Next, open another command line and run:

rosrun mycobot_ros teleop_keyboard.py
#or
rosrun mycobot_ros teleop_keyboard.py _speed:=70

You'll see the following output on the command line:

143

Mycobot Teleop Keyboard Controller

Movimg options(control coordinations [x,y,z,rx,ry,rz]):
 w(x+)

 a(y-) s(x-) d(y+)

 z(z-) x(z+)

u(rx+) i(ry+) o(rz+)
j(rx-) k(ry-) l(rz-)

Gripper control:
 g - open
 h - close

Other:
 1 - Go to init pose
 2 - Go to home pose
 3 - Resave home pose
 q - Quit

currently: speed: 50 change percent 5

The parameters supported by the script：

 _speed ：The movement speed of the robot arm
 _change_percent ：The percentage of the movement distance.

144

MoveIt
 mycobot_ros is now integrated into the MoveIt section

Open the command line to run:

roslaunch mycobot_ros mycobot_moveit.launch

The running results are as follows:

You can plan and execute to demonstrate the effect:

If you need to synchronize the plan with the real robot arm, you need to open
another command line and run:

rosrun mycobot_ros sync_plan.py
#or
rosrun mycobot_ros sync_plan.py _port:=/dev/ttyUSB0

The script supports setting port numbers and baud rates, which are defaulted
to "/dev/ttyUSB0" and 115200 。

145

Please look forward to more...

146

RoboFlow

Download RoboFlow

1. Introduction to the RoboFlow
The RoboFlow is the operating system of the Elephant Collaborative Robot. It
provides a human-computer interaction interface, which is convenient for
operators to interact with the elephant robot and use the elephant robot correctly.
That is to say, when the user uses the robot, most of the time is achieved by using
the RoboFlow operating system.

For example, since the RoboFlow operating system runs in the teach pendant, the
user can use the carrier of the teach pendant to perform manual robotics,
programming, and other operations. The operating system OS can also be used
to communicate with other robots or devices. All in all, with the advantages of
friendly interface and rich functions, the appearance of the RoboFlow operating
system makes it easier for users to start using the elephant robot. It makes
everyone a commander of robots.

2 Main interface introduction

2.1User Login Interface

When the controller is powered up and the system startup button on the teach
pendant is pressed, the login page is entered. Figure 2-1 shows the login page of
the OS3 operating system.

https://www.elephantrobotics.com/software/RoboFlow/myCobot/RoboFlow_3.4.0-preview5_mycobot_windows_amd64.rar

147

Figure 2- 1 login interface

As shown in the login page, "TAUGHT BY PEOPLE, PERFORMED BY ROBOT",
this is the concept that the elephant robotics has always insisted on making the
operator become the commander of the robot. Let robots replace people with
simple but repetitive tasks, work in harsh working conditions, and work that
people can't do well (such as scenes with very high operational accuracy).

There are two types of login users for the OS3 operating system, one is the
administrator and the other is the operator. The administrator has the highest
authority to perform all operations, programming and setup. The operator can only
load and run existing programs and check the statistical data information.

Administrators can add and modify multiple accounts in the settings, including
operator accounts.

By clicking on the "Shutdown" button, the OS3 operating system can be turned
off, and then the power supply can be turned off, thus the robot system can be
shut down.

2.2Main Menu

When the login is successful, it will go to the main menu page. The main menu of
the OS3 operating system is shown in Figure 2-2.

Figure 2- 2 Main menu

On the left side of the main menu, there are four different options available:

Run Program

Load an existing program directly and control the program to run. In this
window, the user is not allowed to edit the program, but can only control
the program running (such as control program running, pausing,
stopping). At the same time, you can view the log and other related
information during the running process of the program.

Edit Program

148

Users can choose to load an existing program in this window for
modification, or they can choose to create a new blank program for
editing.This window is the most frequently used function window for
users. Besides programming, it can also perform other operations, such
as manual manipulation of robots with "fast moving" function, forced
control of IO signals, new variables, etc.

Statistics

In this window, users can not only view the existing running data of the
system, but also view related information saved before.

Settings

In this window, the user can make basic settings for the robot. Such as
robot open, robot off, account management, default program settings,
etc.

In addition to these four main options, in the right window of the main menu, the
user can see and open the most recently run program files. It is convenient for
users to quickly find the most recently run program and control the program to
run.

Click the "Shutdown" button to close the OS3 operating system; click the "Logout"
button to log out.

2.3 Run Program

If the user selects "Run Program" in the main menu, it will enter the Run Program
window. The running program window of the OS3 operating system is shown in
Figure 2-3.

Figure 2- 3 Program editing window option

149

Users can enter the program window by loading the program they need to run. In
this window, users can:

1.Get the basic information of the current (ready) running program, including
program name, running status, user type.

2.Understand the statistical information of the current running program, such as
the total number of runs and the rhythm, etc.

3.Read the relevant information of the current running program through the
display window, such as IO, variables, logs, etc.

4.The most important thing is that the running program window is the channel for
the user to load and run the program that has been debugged.

2.4Edit Program

As shown in Figure 2-4, if the user selects "Write Program" in the main menu, two
options will appear in the right window. The first is to create a program (optional
blank or template) and the second is to load the program.

Figure 2- 4 Program Editing Window Options

150

Figure 2- 5 Program Editing Interface

When first entering the program edit page, the user sees the initial page as shown
in figure 2-5. In this page, common tools, initialization group and file management
functions are provided. The role of the initialization group is to make it easy for the
user to set the program content to run at the beginning of the program and run
only once. For example, set the initial point, Io State, and so on before the robot
starts formal work. File management provides users with a way to manage files.
Users can manage program files here, and can copy them to the U disk, or from
the U disk to the system memory. If the user wants to go back to the initial page
during the programming process, click "Back".

Function bar As shown in Figure 2-6, the function bar has seven sub-options,
which are divided into two categories, one is the program editing toolbar, and the
other is the function editing column.

151

Figure 2- 6 Function bar

Program editing toolbar: Includes file option bar, edit option bar, and toll options
bar. File：As shown in Figure 2-7, you can edit the program file. There are
several operation options: Save, Save As, New, Load, Rename, and Exit.

Figure 2- 7 File option bar

Edit：As shown in Figure 2-8, you can edit the specific command content in the
program file. There are cut, copy, paste, delete, disable, delete all, redo, undo
options.

Figure 2- 8 Edit option bar

A. Tool options bar：As shown in Figure 2-9, it is a shortcut toolbar. When editing
a robot program, the user often uses other tools to operate the robot. The tool
options bar provides tools commonly used in program editing. Tools provided
include: Quickmove, install, input and output, variables, logs, basic settings. For
example, when editing a motion command, the user needs to manually operate
the robot to a working position and teach the point. Then, the “Quickmove” tool in
the toolbar can be selected to manually operate the robot to move to the position.

Figure 2- 9 Tool options bar

Functional Editing Window The OS3 operating system provides a rich set of
features that allow users to perform complex functions with simple operations.
Simple, but not simple functions, thus reducing the time workers to learn

152

programming, efficient accomplish their goals. The function editing bar includes
basic functions, logic functions, advanced functions, and extended functions.

Basic functions：As shown in Figure 2-10, the basic functions include Waypoint,
Gripper, Wait, Set, and Group, which are some basic functions commonly used by
users.

Figure 2- 10 Basic functions

Waypoint: “Create new waypoints → Manually operate the robot to move the
robot to the target point → Save current point → Running program”. With this
series of operations, the user completes the goal of controlling the movement
of the robot to the target point. If you create multiple waypoints, the motion of
the robot will form a trajectory when you run the program.
Gripper: The user can use this function to set the end effector. For example,
it holds the workpiece or releases the workpiece.
Wait: Users can use this function to delay, or wait for signals, conditions, and
so on.
Set: Users can use this function to set the input and output signals and
custom conditions.
Group: Users can use this function to edit the programs in the group.
Logic function： As shown in Figure 2-11, the logic functions include Loop,
If/Else, Subprogram, Thread, Halt, Switch, to complete the program running
process control.

Figure 2- 11 Logic function

Loop: The user can use this function to set a block to run cyclically multiple
times.
If/Else: The user can use this function to make conditional judgments, such
as the determination of an input signal.
Subprogram: The user can use this function to call a subroutine.
Thread: Users can use this function to achieve robot multi-thread control.
Halt: The user can use this function to control the program to pause, stop,
restart, and pop up the window to display the corresponding prompt
information.
Switch: The user can use this function to make a condition selection and
determine the content to be executed according to the value of the selected
object.
Advanced function: As shown in Figure 2-12, advanced functions include
Pallet, Assign to Var, Script, Popup, and Sender, all of which perform more
complex operations.

Figure 2- 12 Advanced function

153

Pallet: Users can use this function to realize the robot to perform regular
point movements. For example, the handling of workpieces in pallets,
palletizing, etc. It is also possible to implement the fixed but irregular
rendezvous motion of the robot in sequence.
Assign to Var: Users can use this function to implement the assignment of a
variable.
Script: With the scripting feature, users can use the other common functions
to achieve simple tasks while using the elephant robot, and can also use
script programming to complete more complex tasks.
Popup: Users can use this function to customize the pop-up window to
display related information. This helps the operator to analyze the status of
the current robot running program.
Sender: Users can use this function to achieve TCP/IP communication
between the elephant robot and other devices.
Extended function: To adapt to different application scenarios, the OS3
operating system provides some extension functions, and even customizes
functions according to important application scenarios proposed by users.

Figure 2- 13 Extended function

Program Display Window On the left side of the program editing page, there is a
program display window as shown in Figure 2-14. The upper part is the name of
the currently open program file, and the lower part is the program tree, which
records the specific instructions and related information.

154

155

Figure 2- 14 Program Display Window

On the right side of the program editing page, there is a function editing window
as shown in Figure 2-15, which shows the specific contents of the function
instructions.

Figure 2- 15 Functional Editing Window

The user can make specific settings for the function instructions in this window.
Quick control and current command renaming, deletion, and disabling are also
provided here.

At the bottom of the program editing page, there is a program running control bar
as shown in Figure 2-16. When debugging a program, users can use it to run,
pause, stop and limit the running speed of the program.

Figure 2- 16 Program run control bar

2.5Statistics

When users use elephant robots, they can not only program and control the robot
to complete the corresponding tasks, but also get some valuable statistical data in
the statistical report window for analysis and statistics.

The statistical report window is divided into four sub-windows.

As shown in Figure 2-17, the general class counts the total running time, the
number of active programs, and the specific information of active programs.

156

Figure 2- 17 Conventional statistics

As shown in Figure 2-18, the program class counts the total running time and
times of different programs.

Figure 2- 18 Procedural statistics

As shown in Figure 2-19, the log lists the general information, warning information
and error information recorded by the system during the user's use of OS3
operating system. This information helps users to determine what changes and
feedback the system has made during the operation of the OS3 operating system.

In particular, error information can help users quickly locate the possible causes of
errors, so as to solve problems according to error information and resume normal
use.

157

Figure 2- 19 Log statistics

As shown in Figure 2-20, security statistics can help users to count security-
related information, such as collision information, number of stops, etc.

Figure 2- 20 Security statistics

2.6Settings

In the configuration center, users can configure the robot. For example, power the
robot, turn off the robot, set the load, time, network and so on. Initialization

The initialization configuration page is shown in Figure 2-21.

When robot movement is required, the user needs to enter the configuration
center → initialize the robot, or shut down the robot. In the initialization page, you
can also set the load and installation, these two are important configuration

158

content before other operations, such as configuration errors may cause
unexpected situations.

Figure 2- 21 Initialization

Default program

Figure 2-22 shows the default program settings page.

Figure 2- 22 Default program

This function allows the user to set a default running program. As long as the
system starts, the robot directly enters the running program window, and can start
running the program and perform corresponding actions to complete the specified
task.

159

If the user does not want the system to start and the startup program starts
running, you can choose not to run.

Version update Figure 2-23 shows the version update settings page.

Figure 2- 23 Version update

This page allows users to update the OS3 operating system in two ways, one for
local file updates and one for network updates. Figure 2-24 shows the account
management page.

Figure 2- 24 Account management

Users can add new users, delete expired users, or change passwords on this
page. On this page, the user can get all the account information. Language and
unit The language and unit settings page are shown in Figure 2-25. At present,

160

the OS3 operating system supports Chinese and English and metric units. Other
languages and units are increasing, so stay tuned!

Figure 2- 25 Language and unit

Time Figure 2-26 shows the time setting page.

Figure 2- 26 Time

The user can set the system time on the current page. If the "24-hour system" is
not checked, the time display format defaults to 12-hour system. Touch screen
calibration

Figure 2-27 shows the touch screen calibration instructions. The user clicks on
"Start to Calibrate" to enter the calibration interface. The calibration interface will
appear in sequence with four circles, as shown in the figure. The user needs to
click the center of the circle with a touch pen, and each time the button is clicked,

161

the next circle will appear until all four circles appear. A pop-up window will
appear indicating that the calibration is complete, and you can exit the calibration
screen after confirming the pop-up.

If the calibration times out or the steps are wrong, a pop-up prompts the
calibration failure. At this point, you can confirm to exit the calibration interface
and return to the page in Figure 2-27 to recalibrate.

图2- 27 Touch Screen

About us As shown in Figure 2-28, it is about our page.

Figure 2- 28 About us

This page shows basic information about the operating system of the OS3
operating system. For example, the model of the robot used is the Elephant
series, version information, and so on.

162

For more information, please visit the official website
https://www.elephantrobotics.cn。

3 Introduction to common tools

3.1Quickmove

Quickmove is a tool that users use frequently when they operate the robot quickly
and manually. Therefore, every user must be very familiar with the use of
Quickmove using methods. The wrong operation may result in damage to the
robot and its peripheral equipment, and even injuries to personnel.

As shown in Figure 3-1, Quickmove are mainly composed of 11 parts, which are
described below.

Figure 3- 1 Quickmove

Motion Control Mode in Cartesian Coordinate System

As shown in Figure 3-2, over-fixed-point O, three axes perpendicular to each
other, all with O as the origin and generally with the same unit of length. These
three axes are called x-axis (horizontal axis), y-axis (vertical axis), and z-axis
(vertical axis), which are collectively referred to as coordinate axes. The x-axis
and y-axis are usually arranged on a horizontal plane, while the z-axis is a plumb
line. Their positive direction is in accordance with the right-hand rule, that is,
holding the z-axis with the right hand. When the four fingers of the right hand turn
from the positive x-axis to the positive y-axis from the π/2 angle, the thumb is

https://www.elephantrobotics.cn/

163

pointed to the positive direction of the z-axis. Such three axes form a spatial
Cartesian coordinate system, and point O is called the coordinate origin. This
constitutes a Cartesian coordinate.

There are three planes in the three-dimensional Cartesian coordinate system, XY-
plane, YZ-plane, and XZ-plane. These three planes divide the three-dimensional
space into eight parts, called octant spaces. The three coordinates of each point
of the first limit are positive values.

Figure 3- 2 Cartesian coordinate system Direction callout diagram

As shown in Figure 3-3, the robot can be controlled to move in the direction of the
Cartesian coordinate system by clicking the key corresponding to the direction of
the Cartesian coordinate system.

Figure 3- 3 Cartesian coordinate system motion control mode button

3D View This window marks the direction of movement of the six joints of the
robot.

User coordinate system
Motion mode switching

There are two main motion modes for manual manipulation robots.

Continuous motion mode: The user presses the motion control button and
allows the robot to move until the user releases the button and the robot
stops. For example, if you press the + X direction motion control button, you
need to hold the button all the time. The time of pressing the motion control
key determines the distance of the robot in the + X direction.
Stepping motion mode: Manual manipulation robot step motion, click "step
motion" and open the step setting window as shown in Figure 3-4. Then the
user chooses the step in this window and clicks the key of the target control

164

direction. Every time he clicks, the robot takes a step. For example, choose a
1 mm step, click the X-direction movement control button, and every time you
click the button, the robot will move 1 mm in the + X direction.

Figure 3- 4 Step-by-step motion step setting window

Speed As shown in Figure 3-5, the control speed of the manual manipulator can
be set here. Speed can be set from 0 to 100%.

Figure 3- 5 Speed setting window

Move to origin By selecting the icon shown in Figure 3-6, the robot can be
controlled to return to its original position and posture.

 Figure 3- 6 Move to
origin

165

Freemove Select the icon shown in Figure 3-7 to switch to the drag mode.

 Figure 3- 7
Freemove

Return Click on the icon shown in Figure 3-8 to return to the programming

operation window. Figure
3- 8 Return

Joint control Serial robot is an open kinematic chain of the robot. It is formed by
a series of connecting rods connected in series with a rotating joint or a moving
joint. The elephant cooperative robot belongs to a 6-axis serial robot. It drives the
relative motion of the connecting rod by using motor drivers to drive the
movement of 6 joints, allowing the end operator to reach the right posture. The
Joint control window shown in Figure 3-9 provides the keys used by the operator
to manually manipulate the robot and control the robot for joint movement using
the instructor. The control buttons for each joint are divided into 2 directions, and

166

the angle data of each axis can be seen.

Figure 3- 9 Joint motion mode control window

Coordinate position As shown in Figure 3-10, this window displays the
coordinate position corresponding to the coordinate control.

Figure 3- 10 Coordinate position display window

Status display button: The button has two states, "OK" (displays green) and
"Reset" (displays red). When the display is normal, it indicates that the robot is
working properly, and when the reset is displayed, the robot is abnormal, the
anomaly needs to be lifted and the key is clicked for reset.

3.2Installation

167

As shown in Figure 3-11, there are three submenus inside the installation tool. It is
used to implement the loading/saving installation configuration, security
configuration, and network configuration of the elephant robot.

Figure 3- 11 Load/save installation

Security configuration: As shown in Figure 3-12, set the torque limit and brake
control of the elephant robot.

Figure 3- 12 Security configuration

168

Network Configuration: As shown in Figure 3-13, configure the IP address and
port number of the Ethernet communication here.

Figure 3- 13 Network settings

3.3 Input and output configuration

The robot system has a total of 16 digital input signals and 16 digital output
signals. As shown in Figure 3-14, the input and output signals can be configured
and monitored in this window, and the output signals can be forcibly output. IO
configuration files can also be saved and loaded on this page. As shown in Figure
3-15, it is an input/output interface description corresponding to the page shown in
Figure 3-14.

Figure 3- 14 Input and output configuration

169

Figure 3- 15 Input and output interface description

It should be noted that the input public terminal needs to be connected to 24V
power supply. It can be determined whether the input is active high or active low
according to the common configuration (hardware connection determines 24V or
0V). As shown in Figure 3-16, when the common terminal is connected to 24V,
once an external device inputs 0V, the input signal is in the “High” state, otherwise
it is in the “Low” state; vice versa.

Figure 3- 16 Input signal application diagram

As shown in Figure 3-17, the output is 24V when there is no output. Once the
output is turned on (that is, the output is High), the output is 0V.

170

Figure 3- 17 Output signal application diagram

3.4Variable

As shown in Figure 3-18, in the variable editing window, you can add, edit, and
delete variables.

Figure 3- 18 Variable editing

As shown in Figure 3-19, there are 5 types of editable variable types. They are
string variables, pose variables, floating point variables, integer variables, and
Boolean variables. On this page, you can edit the variable name and initial value.

Figure 3- 19 New variable interface

3.5Log

171

As shown in Figure 3-20, you can view information about the robot running status,
error information, and alarm information in the running log window. Click the
"Information", "Warning" and "Error" buttons to sort the corresponding logs.

Users can save logs to a local folder. Log files are a record of how the system is
performing, helping users to have a clearer understanding of the system and also
helping to troubleshoot errors.

Figure 3- 20 Running log

3.6Basic Settings

172

As shown in Figure 3-21, the basic settings page provides a common setting
channel, allowing the user to quickly set up some functions, such as free
movement related parameter settings, even when leaving the programming
window while writing the program.

Figure 3- 21 Basic Settings

4 Function instruction

4.1 Basic function

4.1.1Waypoint

There are four types of waypoints: Absolute points, Relative points, Shared
points, and Variables. These four types are side-by-side. Under one waypoint
command, you can only choose one.

Absolute point: The absolute point is a description of the actual pose of the
robot.

That is, as long as the robot records the absolute point, the next time the
instruction is executed, regardless of the position of the robot (other settings
unchanged), will reproduce the original teaching of the absolute point of
posture.

The specific configuration page for absolute points is shown in Figure 4-1.

173

Figure 4- 1 Absolute point

Road Point coordinates

As shown in Figure 4-2, there are two formats for the representation of
absolute points, namely Cartesian coordinate system coordinate values and
joint angles. Among them, the Cartesian coordinate system coordinate value
records the position and attitude of the robot TCP relative to the base
coordinate system (in mm),.The joint angle is a direct record of the actual
angle of each axis (in degree, degrees).

Figure 4- 2 Absolute point Position data

Waypoint control Save current point This button is used to save the current pose
data of the robot. Move to this point If you need to verify the teaching point or
move to the teaching point for some operations, press and hold the button until
the robot moves to the current teaching point. If the current teaching point is no
longer needed, this button is used to clear the current teaching point. Advanced
Features Shared configuration: This feature is being debugged, so stay tuned!
Advanced configuration As shown in Figure 4-3, in the advanced configuration
page, the user can set the movement mode, proximity mode, command speed,
and torque limit.

174

Figure 4- 3 Advanced configuration

Relative point: The relative point is used in a situation where a certain
displacement is required based on a corresponding point of the movement
instruction on the robot/an absolute point/variable point offset. The displacement
can be a distance in a single direction, or a superposition of displacements in
multiple directions, and can also teach a segment to offset. Figure 4-4 shows the
specific configuration page of the relative point.

175

Figure 4- 4 Relative point

Direct input(relative movement) As shown in Figure 4-5, you can directly enter the
coordinate value / joint angle.

Figure 4- 5 Two forms of direct input

Regardless of whether the coordinate value or the joint angle is input, one or
more of the six values are selected according to the offset requirement, and not
every value is required to be input.

For example, as shown in Figure 4-6, in the actual pickup and placement process,
it is necessary to set a transition point above the target placement position. At this
time, we can set a path command as absolute point, control the robot (at this time
the robot should be holding the state of the workpiece) to move to the placement
point, click to save the current point, which generates the command line 2 shown
in Figure 4-6. Then click on the basic function - waypoint: select the relative point,
set the z-direction of the icon to increase the relative point of 50mm, then the
robot will move to the position of the transition point after running the last
sentence. In the actual pickup and placement process, other instructions, such as
setting instructions, may be added between the two instructions to open the
gripper.

176

Figure 4- 6 Application examples of direct input coordinate values

In addition to offset based on the position of the last motion instruction, relative
point instruction can also be offset based on a Waypoint or Variable point.

The "Move to this" button verifies the offset motion, and "Clear Saved Points"
clears the currently entered content.

Reference move: By teaching two points, a path is generated, based on the
current point, and the track is reproduced.

Advanced Features: The advanced configuration of the absolute point is not
repeated here.

Shared point：The share point can use the location of other waypoints. Figure 4-
7 shows the specific configuration page of the share point.

Figure 4- 7 Shared point

177

Shared point: Select the point you want to share in the box, you can keep
pressing the "Move to this point" button to control the robot to move to that point.
If you click "Clear Saved Points" to clear the current share point.

Advanced Features: The advanced configuration of the absolute point is not
repeated here.

Variable: The waypoint can be assigned by a variable. The user can use the
communication method to obtain the waypoint location from other devices.

Figure 4-8 shows the specific configuration page of the variable point.

Variable assignment: The user can select the associated pose variable, and
"Move to this point" can check whether the pose is the target pose.

Advanced Features: The advanced configuration of the absolute point is not
repeated here.

Figure 4- 8 Variable

4.1.2 Gripper Figure 4-9 shows the specific configuration page of the gripper.

178

Figure 4- 9 Gripper

The user defines and controls the gripper through a simple function.

1 Select gripper
2 Set existing grippers
3 Select the gripper, you can edit or delete the existing gripper.
4 Define new grippers 如图4-10所示，可以命名夹爪，同时控制多个输入信
号：设置需要控制的输出信号的数量、在“设置”中选择设置第几个信号、设置
状态（关系到具体执行时对应“打开”或“关闭”功能）、设置对应输出信号。在
设置完成后，还可以选择等待条件。

179

Figure 4- 10 Define new grippers

Set the saved state

Fully open: The option in the execution gripper definition is the"open" state.
Completely off: The option in the execution gripper definition is "off" status.
Debug control
Open the gripper: Manual operation performs the option of the "Open" state
in the gripper definition.
Close the gripper: Manual operation performs the option of the "Close" state
in the gripper definition.

4.1.3 Wait As shown in Figure 4-11, there are four modes for waiting for
instructions.

Waiting time: The delay time can be set in seconds.
Waiting for the input signal: The state of the input signal is judged and waits
until it meets the set input signal state condition.
Waiting for the output signal: The state of the output signal is judged and
waits until it meets the set output signal state condition.
Waiting conditions: You can customize the wait condition and wait until the
wait condition is met.

180

Figure 4- 11Wait

4.1.4 Set As shown in Figure 4-12, the setup command has four modes of
selection.

Set IO: Set the state of the output signal. In addition to selecting the set
output signal to determine whether it is on or off, you can also set the time
that the signal is held.
Set conditions: Customize the content of the settings.
Set TCP (i.e. tool center point).
Set the load.

Figure 4- 12 Set

4.1.5Group As shown in Figure 4-13, the group instructions provide common
combination templates, such as grabbing and placing combinations.

181

Figure 4- 13 Group

When users use group instruction, such as grabbing and placing combinations,
they can modify parameters and teach Waypoints directly on the basis of template
programs, or they can add or delete instructions freely according to their needs.

The user can simplify the process of finding instructions by using the group
instruction. And it is more convenient and quicker to complete the programming of
the corresponding project.

4.2 Logic function

4.2.1Loop Loop instructions can repeat all instructions within a loop for a certain
number of times. As shown in Figure 4-14, the number of loops can be
represented by a constant or a variable or an expression.

182

Figure 4- 14 Loop

4.2.2 If/Else

Judging the set conditions allows the program to read the data, determine and
determine what to do next.

If/Else can be used to determine the I/O signal and can also be used to determine
other conditions.

If/Else consists of three parts: If, Else If, and Else. The relationship between these
three parts is as follows:

Except that If is an integral part, the remaining two are optional parts;

If both If, Else If, and Else exist, the program will first read If, then read Else If,
Else If ... Else. The relationship between the three is shown in Figure 4-15:

Figure 4- 15 Relationship between If, Else If, and Else

There can be more than one Else If, but there is only one If, and if you choose to
add Else, you can only have one Else.

You can delete Else If or Else, but if you delete If, delete all Else If and Else.

Figure 4-16 shows the setting page of the conditional judgment command.

183

Figure 4- 16 If/Else

As shown in the figure above, if the condition following "If" is met, the robot will
move to waypoint 1; if it meets the condition followed by "Else if", it will move to
waypoint 2; if both conditions are not met, the "Else" corresponding block will be
executed, that is, the robot will move to the waypoint 3.

4.2.3 Subprogram As shown in Figure 4-17, other subroutines can be called
using this instruction. The main program can use multiple subroutines, but there
are no subroutines in the subprogram.

Figure 4- 17 Subprogram

184

As shown in Figure 4-18, you can view and edit subroutines in the main program.
If you edit the subroutine, please note that it will not take effect until it is saved.

Figure 4- 18 Display subroutine

4.2.4Thread The thread runs along the main program. It is used to check signals
such as emergency buttons or safety light curtains. As shown in Figure 4-19, you
can set the running interval of threads.

Note that motion instructions are not allowed in threads. 4.2.5Halt The pause
command is used to control the robot to pause, stop, and resume. Figure 4-20
shows the specific configuration page for the pause command.

When setting the pause and stop status, you can also select “Show Popup”
to customize the contents displayed by the popup.
Set the restart state. When the program runs to this instruction, it will start
running again from the first instruction at the beginning.

185

Figure 4- 20 Halt

4.2.6 Switch As shown in Figure 4-21, the conditional selection instruction is used
to judge the value of a variable.

Figure 4- 21 Switch

Corresponding to different conditional values, how many conditional values need
to be judged to add how many cases, you can open each case, increase the
corresponding execution instructions. For example, to judge the integer variable
A, set two cases, if A is 1, execute the first route instruction, if A is 2, execute the
second route instruction.

If only a few variables are judged, and other cases are handled uniformly, we
need to select "default" and add corresponding instructions to the switch.

186

4.3 Advanced function

4.3.1Pallet The pallet instruction allows the user to teach only a few points,
through which the position of the other points can be calculated by the robotic
system. Running this instruction can control the movement of the robot to these
points. As shown in Figure 4-22, you can select a line, plane, cube, discrete point.

Figure 4- 22 Pallet type Selection

As shown in Figure 4-23, after you select line, select the number of points, and
the line will be split evenly based on the number of points. These points are the
split point. The user determines this line by teaching two points.

Figure 4- 23 Line

187

As shown in Figure 4-24, after selecting “Plane”, select the number of points of
the two axes, and the plane is divided equally. These points are the dividing
points. This plane is determined by teaching four points.

Figure 4- 24 Plane

As shown in Figure 4-25, after selecting "Cube", select the number of points of the
three axes, and the cube is divided equally. These points are the dividing points.
Determine this cube by teaching eight points.

Figure 4- 25 Cube

As shown in Figure 4-26, when “Discrete Point” is selected, the number of points
is selected to teach different points. That is, a discrete point is a collection of
multiple points.

188

Figure 4- 26 Discrete point

4.3.2Assign to var As shown in Figure 4-27, this command can assign values to
integer variables and string variables. You can also use the "set variables" to
directly set the value of the variable according to the instruction.

Figure 4- 27 Assign to var

4.3.3Script Script instructions can be used to edit complex instructions, providing
a richer set of functional instructions. Figure 4-28 shows the specific configuration
page of the script command. There are two types of setup scripts, one is a single-
line expression and the other is a multi-line script.

189

Figure 4- 28 Script

4.3.4Popup The pop-up command allows the user to customize the pop-up
window. In other words, when this command is executed, a pop-up window
appears, and the pop-up content is user-defined content. As shown in Figure 4-
29, there are three types of pop-up windows, information, warnings, and errors.
The user selects one and customizes the pop-up content.

There are also three kinds of pop-up window control: continue the program
(logging), that is, do not pop the window, just display the contents of the pop-up
window to the log, and the program continues to run; When the window is
popped, the program is paused, that is, the pop-up window appears, and the
program is suspended; When the window is popped, the program stops, and the
pop-up window appears, and the program stops running.

Figure 4- 29 Popup

190

4.3.5Sender

If TCP/IP communication is to be performed, the robot system must set the IP and
port number as a client or server to communicate with other devices.

The sender allows the user to set up a TCP/IP connection. Figure 4-30 shows the
specific configuration page of the Sender instruction.

If the robot system acts as a client, the IP address filled in is the IP address of the
external device of the server, and the port number corresponds to the port number
assigned to the robot system by the server. When the server is in the state of
monitoring, it can communicate with the server by clicking the "connection"
button.

If the robot system serves as a server, the IP address filled in is the local IP
address, and the port number corresponds to the port number assigned to the
client device. Click on the "monitor" button, at which point the client device can
connect to the robot system. In the client list, you can view the IP addresses and
port numbers of all clients.

After establishing communication, data can be sent and received.

Figure 4- 30 Sender

5 Quickly create a new runnable project

5.1 Flow Description

5.1.1 Ready to work

Precondition

Complete robot system
No problem Prepare content

191

Plug the power cord into the board that provides the AC 220V.
Turn on the power switch. Press the start button on the teach pendant.

5.1.2 Flow chart As shown in Figure 5-1, it is the program editing flowchart.

Figure 5- 1 Program editing flow chart

5.2 Specific steps

5.2.1 Login After the system is successfully started, it will enter the login interface
of the OS3 operating system as shown in Figure 5-2.

192

Figure 5- 2 Login interface

Select the login user name "Admin" or other administrator user name (only
administrator permissions are allowed to edit and debug the program), click on
the password box will pop up as shown in Figure 5-3.

Figure 5- 3 Input keyboard

The login password corresponding to the default administrator user “Admin” is
“aaa” (if the other administrator user name is selected, enter the corresponding
login password), enter the password and click “OK”, and return to the interface of
Figure 5-2. Then click "Login" to log in successfully. 5.2.2 Power on After the
login is successful, the main menu interface shown in Figure 5-4 will be displayed.

193

Figure 5- 4 Main menu

In the main menu interface, select “Settings”, it will enter the interface as shown in
Figure 5-5 (this time has not been powered).

To ensure that the emergency stop knob is not pressed, click on the “Start Robot”
button as shown in Figure 5-5. The interface will change and the “Powering On”
icon as shown in Figure 5-6 will appear. If the power is turned on successfully, the
“I’m OK!” status shown in Figure 5-7 will appear. If it fails, check if you are missing
any steps.

After completing the previous step, return to the main menu by pressing the motor
“<Main Menu” button in the configuration center.

Figure 5- 5 Unpowered state

194

Figure 5- 6 Powering up

Figure 5- 7 Power on

5.2.3 New blank program As shown in Figure 5-8, click “Program Robot” and
then select “Empty Program”.

195

Figure 5- 8 Select "Empty program"

After performing the previous step, enter the program editing interface as shown
in Figure 5-9.

Figure 5- 9 Enter the program editing interface

5.2.4 Add and edit instructions

As shown in Figure 5-10, add two waypoints: absolute point, and teach two points
(that is, use the Quickmove to manually operate the robot, control the robot to
move to a certain pose, return, click "Save Current Point" The teaching steps of
the two points are the same. To verify the save point, press and hold the “Move to
this point” button to manually control the robot to move to the teaching point.).

196

After editing is complete, please note that the program file is saved. Click “Save”
in the file option bar as shown in Figure 5-10, and the window shown in Figure 5-
11 will pop up. Click on "File Name" and the input keyboard shown in Figure 5-12
will appear. After entering the file name, click "OK". Then go back to the save
interface, click "OK", the program file is saved successfully. After the save is
successful, as shown in Figure 5-13, the program name in the upper left corner of
the program editing interface will be changed.

Figure 5- 10 Program editing

Figure 5- 11

197

Figure 5- 12 Enter the program name

Figure 5- 13 File saved successfully

5.2.5 Program Debugging As shown in Figure 5-14, in addition to the "Next" and
"Run" functions provided in the program run control bar, click "Advanced" to enter
the more settings interface.

Among them, the "Next" function corresponds to step by step execution of the
program, click to run only one step at a time, if you need to continue to run,
continue to click "Next." The "Run" function corresponds to automatically running
the program once.

In "Advanced ", you can set the number of cycles to run, or you can run in an
infinite loop. You can also control whether the program runs in automatic or
manual mode. In the automatic mode, you can use "Next", "Run" and cycle
operation. In the interface shown in Figure 5-14, select "Manual Run Mode" and
then select "Run" or "Infinite Loop" in the loop run. You can enter the running
interface in manual operation mode as shown in Figure 5-15.

198

Figure 5- 14 Program debugging

Figure 5- 15 Manual mode to debug the program

If you use manual mode to debug the program, you need to keep pressing the
"Press Down" button to continue running. If you release the button, the program
pauses and presses again to continue.

5.2.6 Save and run the program

If debugging is complete, make sure you have saved the debugged program.
After returning to the main menu, select "Run Program". The pop-up window
shown in Figure 5-16 will appear. Select the program to complete the debugging
and click “OK”.

199

Figure 5- 16 Selection procedure

After selecting the program, it will enter the running program interface as shown in
Figure 5-17. In this interface, you can run the program to view the program
running information.

If you are sure that the program will continue to run in the near future, you can
also select it in the Settings - Default Program. In this way, as long as the system
is started, it will automatically jump to the “Run Program” interface. After the
power is turned on successfully, click “Run” to run the program.

Figure 5- 17 Running programs

200

6 Communications and messages
Note: When use a communication protocol to communicate directly you need to
burn Transponder in Basic and the latest version of AtomMain in Atom.

6.1Communication Settings

Make sure your communication Settings are as follows

Bus Interface: USB Type-C
Baud Rate: 115200
Date Bits: 8
Parity Check:none
Stop Bit: 1

6.2 Command Frame Description & Single Instruction
Parsing

The main BASIC sends data to the Atom, and the Atom parses the data after
receiving it. For example, an instruction containing Return Value will be returned
to the BASIC within 500ms.

6.3Format for Sending and Receiving Command
Frames

All commands are hexadecimal, and the format of send and receive is the same.

Each communication command must contain the following five parts,part 3 and 4
of which can be null.

*1 Command Frame Head: 0xFE 0xFE
Fixed
Included

Effective Command Length : 0x02 ~ 0x10
The length of all the following commands
Included

201

Command Sequence Number: 00 ~ 8F
Various commands have been developed
Null

Command Content: some
Null

End of the Command: 0XFA
Fixed
Included

6.4 Single Instruction Parsing

The main BASIC sends data to the Atom, and the Atom parses the data after
receiving it. For example, an instruction containing Return Value will be returned
to the BASIC within 500ms.

Type Data
Description

Data
Length Description

Command
frame First byte 0 1 The frame head identification,

0xfe

First byte1 1 The frame head identification,
0xfe

Data length
byte 1

Different instructions
correspond to different lengths
of data

Command
byte 1 Depends on different

commands

Data
frame Data 0-16

Command attached data,
depends on different
commands

End frame End the
byte 1 Stop bit, 0xfa

1). Atom Power On

Data field Description Data

Data[0] Identify the frame 0xfe

Data[1] Identify the frame 0xfe

Data[2] Data length frame 0x02

Data[3] Instruction frame 0x10

Data[4] End frame 0xfa

Serial port sending example: FE FE 02 10 FA

No Return Value

2). Atom Power Off

202

Data field Description Data

Data[0] Identify the frame 0xfe

Data[1] Identify the frame 0xfe

Data[2] Data length frame 0x02

Data[3] Instruction frame 0x11

Data[4] End frame 0xfa

Serial port sending example: FE FE 02 11 FA

NO Return Value

3). Atom Status Inquiry

Data field Description Data

Data[0] Identify the frame 0xfe

Data[1] Identify the frame 0xfe

Data[2] Data length frame 0x02

Data[3] Instruction frame 0x12

Data[4] End frame 0xfe

Serial port sending example: FE FE 02 12 FA

Return Value

Data field Description Data

Data[0] Return frame header 0XFE

Data[1] Return frame header 0XFE

Data[2] Return data length frame 0X02

Data[3] Return instruction frame 0X12

Data[4] Power on/off 0X01/0X00

Data[5] End frame 0XFA

Serial port sending example: FE FE 02 12 00 FA

4).Read Angle (read position information)

Data field Description Data

Data[0] Identify the frame 0xfe

Data[1] Identify the frame 0xfe

Data[2] Data length frame 0x02

Data[3] Instruction frame 0x20

Data[4] End frame 0xfa

203

Serial port sending example: FE FE 02 20 FA

Returns a data structure from Atom

Data field Description Data

Data[0] Return frame header 0XFE

Data[1] Return frame header 0XFE

Data[2] Return data length frame 0X0E

Data[3] Return instruction frame 0X20

Data[4] Servo 1 high Angle Angle1_low

Data[5] Servo 1 low Angle Angle1_high

Data[6] Servo 1 high Angle Angle2_low

Data[7] Servo 1 low Angle Angle2_high

Data[8] Servo 1 high Angle Angle3_low

Data[9] Servo 1 low Angle Angle3_high

Data[10] Servo 1 high Angle Angle4_low

Data[11] Servo 1 low Angle Angle4_high

Data[12] Servo 1 high Angle Angle5_low

Data[13] Servo 1 low Angle Angle5_high

Data[14] Servo 1 high Angle Angle6_low

Data[15] Servo 1 low Angle Angle6_high

Data[16] End frame 0XFA

Serial port sending example: FE FE 0E 20 06 E6 EA 4E C4 81 0B BD EA C0 02
B6 FA

How to get the angle of joint 1 ?

temp = angle1_low+angle1_high*256

Angle1=(temp > 33000 ? (temp–65536) : temp)/100

(The rest are the same)

5). Send Individual Angles

204

Data field Description Data

Data[0] Identify the frame 0xfe

Data[1] Identify the frame 0xfe

Data[2] Data length frame 0x06

Data[3] Instruction frame 0x21

Data[4] Joint number Joint_no

Data[5] Angle of rotation Angle

Data[6] high Angle Angle_high

Data[7] low Angle Angle_low

Data[8] End frame 0xfa

Serial port sending example: FE FE 06 21 00 00 00 20 FA

The value of joint NO ranges from 0 to 5

Angle High: Data type Byte

Calculation: The Angle value is multiplied by 100 first to int and then to take the
high hexadecimal byte

Angle Low: Data type Byte

Calculation: The Angle value is multiplied by 100 first to int and then to take the
high hexadecimal byte

No Return Value

6). Send All Angles

205

Data field Description Data

Data[0] Identify the frame 0xfe

Data[1] Identify the frame 0xfe

Data[2] Data length frame 0x0f

Data[3] Instruction frame 0x22

Data[4] Angle 1 is in low_byte Angle1_low

Data[5] Angle 1 is in high_byte Angle1_high

Data[6] Angle 2 is in low_byte Angle2_low

Data[7] Angle 2 is in high_byte Angle2_high

Data[8] Angle 3 is in low_byte Angle3_low

Data[9] Angle 3 is in high_byte Angle3_high

Data[10] Angle 4 is in low_byte Angle4_low

Data[11] Angle 4 is in high_byte Angle4_high

Data[12] Angle 5 is in low_byte Angle5_low

Data[13] Angle 5 is in high_byte Angle5_high

Data[14] Angle 6 is in low_byte Angle6_low

Data[15] Angle 6 is in high_byte Angle6_high

Data[16] Specified speed Sp

Data[17] End frame 0xfa

Serial port sending example: FE FE 0F 22 06 E6 EA 4E C4 81 0B BD EA C0 02
B6 FA

Angle High: Data type Byte

Calculation: The Angle value of Joint 1 is multiplied by 100 first to int and then to
take the high hexadecimal byte

Angle Low: Data type Byte

Calculation: The Angle value of Joint 1 is multiplied by 100 first to int and then to
take the high hexadecimal byte

(The rest are the same)

No Return Value

7). Read All Coordinates

206

Data field Description Data

Data[0] Identify the frame 0xfe

Data[1] Identify the frame 0xfe

Data[2] Data length frame 0x02

Data[3] Instruction frame 0x23

Data[4] End frame 0xfa

Serial port sending example: FE FE 02 23 FA

Returns a data structure from Atom

Data field Description Data

Data[0] Return frame header 0XFE

Data[1] Return frame header 0XFE

Data[2] Return data length frame 0X0E

Data[3] Return instruction frame 0X23

Data[4] Specified x is in a low coordinate x_high

Data[5] Specified x is in a high coordinate x_low

Data[6] Specified y is in a low coordinate y_ high

Data[7] Specified y in a high coordinate y_ low

Data[8] Specified z is in a low coordinate z_ high

Data[9] Specified z in a high coordinate z_low

Data[10] Specified rx is in a low coordinate rx_high

Data[11] Specified rx is in a high coordinate rx_low

Data[12] Specified ry is in a low coordinate ry_high

Data[13] Specified ry in a high coordinate ry_low

Data[14] Specified rz is in a low coordinate rz_high

Data[15] Specified rz is in a high coordinate rz_low

Data[16] End frame 0XFA

How to get x-coordinate ?

temp = x_low + x_high*256

x-coordinate =(temp > 33000 ?(temp – 65536) : temp)/10

(same as the y/z-coordinate)

How to get rx-coordinate ?

temp = rx_low + rx_high*256

rx-coordinate =(temp > 33000 ?(temp – 65536) : temp) /10

207

(same as the ry/rz-coordinate)

8).Send Individual Coordinates

Data
field Description Data

Data[1] Identify the frame 0xfe

Data[2] Data length frame 0x06

Data[3] Instruction frame 0x24

Data[4] Specified coordinate X/y/z/rx/ry/rz

Data[5] Specified xyz/rxryrz is in a low
parameter Xyz/ rxryrz_low

Data[6] Specified xyz/rxryrz is in a high
parameter Xyz/rxryrz_high

Data[7] Specified speed Sp

Data[8] End frame 0xfa

Set the x-coordinate to be 100 and the target speed to be 20

Serial port sending example: FE FE 06 24 00 00 64 20 FA

Specify coordinate axis: data type Byte

Value range: 0~5

xyz_high: Data type Byte

Calculation: The x/y/z coordinate value is multiplied by 10 and then to take the
high hexadecimal byte

xyz_low: Data type Byte

Calculation: The x/y/z coordinate value is multiplied by 10 and then to take the low
hexadecimal byte

rxyz_high: Data type Byte

Calculation: The rx/ry/rz coordinate value is multiplied by 10 and then to take the
high hexadecimal byte

rxyz_low: Data type Byte

Calculation: The rx/ry/rz coordinate value is multiplied by 10 and then to take the
low hexadecimal byte

No Return Value

9).Send All Coordinates

208

Data field Description Data

Data[0] Identify the frame 0xfe

Data[1] Identify the frame 0xfe

Data[2] Data length frame 0x10

Data[3] Instruction frame 0x25

Data[4] Specified x is in a low coordinate X_low

Data[5] Specified x is in a high coordinate X_high

Data[6] Specified y is in a low coordinate Y_low

Data[7] Specified y in a high coordinate Y_high

Data[8] Specified z is in a low coordinate Z_low

Data[9] Specified z in a high coordinate Z_high

Data[10] Specified rx is in a low coordinate Rx_low

Data[11] Specified rx is in a high coordinate Rx_high

Data[12] Specified ry is in a low coordinate Ry_low

Data[13] Specified ry in a high coordinate Ry_high

Data[14] Specified rz is in a low coordinate Rz_low

Data[15] Specified rz is in a high coordinate Rz_high

Data[16] Specified speed Sp

Data[17] Mode Mode

Data[18] End frame 0xfa

Set the target point at the end of the robot (-14，-27，275，-89.5, 0.7，-90.7)

set the target speed to be 20

Serial port sending example: FE FE 10 25 FF 74 FE EE 0A C1 DD 05 00 48 DC
95 32 01 FA

x_high: Data type Byte

Calculation: The x coordinate value is multiplied by 10 and then to take the high
hexadecimal byte

x_low：Data type Byte

Calculation: The x coordinate value is multiplied by 10 and then to take the low
hexadecimal byte

(same as the y/z-coordinate)

rx_high: Data type Byte

Calculation: The rx coordinate value is multiplied by 10 and then to take the high
hexadecimal byte

209

rx_low: Data type Byte

Calculation: The rx coordinate value is multiplied by 10 and then to take the low
hexadecimal byte

(same as the ry/rz-coordinate)

No Return Value

10).Specified Point Arrival Detection (under development)

Data field Description Data

Data[0] Identify the frame 0xfe

Data[1] Identify the frame 0xfe

Data[2] Data length frame 0x10

Data[3] Instruction frame 0x25

Data[4] x is in a low coordinate X_low

Data[5] x is in a high coordinate X_high

Data[6] y is in a low coordinate Y_low

Data[7] y in a high coordinate Y_high

Data[8] z is in a low coordinate Z_low

Data[9] z in a high coordinate Z_high

Data[10] rx is in a low coordinate Rx_low

Data[11] rx is in a high coordinate Rx_high

Data[12] ry is in a low coordinate Ry_low

Data[13] ry in a high coordinate Ry_high

Data[14] rz is in a low coordinate Rz_low

Data[15] rz is in a high coordinate Rz_high

Data[16] Is_linear type

Data[17] End frame 0xfa

Determine whether the manipulator has reached the specified point

Serial port sending example: FE FE 10 25 FF 74 FE EE 0A C1 DD 05 00 48 DC
95 32 01 FA

x_high: Data type Byte

Calculation: The x coordinate value is multiplied by 10 and then to take the high
hexadecimal byte

x_low：Data type Byte

Calculation: The x coordinate value is multiplied by 10 and then to take the low
hexadecimal byte

210

(same as the y/z-coordinate)

rx_high: Data type Byte

Calculation: The rx coordinate value is multiplied by 10 and then to take the high
hexadecimal byte

rx_low: Data type Byte

Calculation: The rx coordinate value is multiplied by 10 and then to take the low
hexadecimal byte

(same as the ry/rz-coordinate)

Type: Data type Byte (Not yet in use)

Returns a data structure

Data field Description Data

Data[0] Return frame 0XFE

Data[1] Return frame 0XFE

Data[2] Return data length frame 0X03

Data[3] Return instruction frame 0X2A

Data[4] InPosition/noInPosition 0X01/0X00

Data[5] End frame 0XFA

It has reached a point;

Serial port sending example: FE FE 03 2A 00 FA

11).Motion Detection

Data field Description Data

Data[0] Identify the frame 0XFE

Data[1] Identify the frame 0XFE

Data[2] Data length frame 0X02

Data[3] Instruction frame 0X2B

Data[4] End frame 0XFA

Check whether the robot is moving

Serial port sending example: FE FE 02 2B FA

Returns a data structure

211

Data field Description Data

Data[0] Return frame 0XFE

Data[1] Return frame 0XFE

Data[2] Return data length frame 0X02

Data[3] Return instruction frame 0X2B

Data[4] Not running/no data - running 0X00/0X01

Data[5] End frame 0XFA

Serial port sending example: FE FE 02 2B 00 FA

12).Jog-Direction Motion

Data field Description Data

Data[0] Identify the frame 0xfe

Data[1] Identify the frame 0xfe

Data[2] Data length frame 0x05

Data[3] Instruction frame 0x30

Data[4] Joint number Joint

Data[5] Joint direction Direction

Data[6] Specified speed Sp

Data[7] End frame 0xfa

Set Joint 1 to rotate clockwise at 50% speed

Serial port sending example: FE FE 05 30 01 01 32 FA

Joint No. ranges from 1~6

di: Data type Byte, ranges from 0~1

sp: Data type Byte, ranges from 0-100%

No Return Value

13).Jog-Coordinate Motion

212

Data field Description Data

Data[0] Identify the frame 0xfe

Data[1] Identify the frame 0xfe

Data[2] Data length frame 0x05

Data[3] Instruction frame 0x33

Data[4] Specified coordinates X1 y2 z3 rx4 ry5 rz6

Data[5] Joint direction Direction

Data[6] Specified speed Sp

Data[7] End frame 0xfa

Set the end to move at a speed of 50% counterclockwise toward the X-axis

Serial port sending example: FE FE 05 32 01 00 32 FA

Axis_number: Data type Byte(x = 0 ,y,z,rx,ry,rz) Range from 1~6

di:Data type Byte, ranges from 0~1

sp: Data type Byte, ranges from 0-100%

No Return Value

14).jog stop

Data field Description Data

Data[0] Identify the frame 0xfe

Data[1] Identify the frame 0xfe

Data[2] Data length frame 0x02

Data[3] Instruction frame 0x34

Data[4] End frame 0xfa

Jog stop to move

Serial port sending example: FE FE 02 34 FA

No Return Value

15).send potential value

213

Data field Description Data

Data[0] Identify the frame 0xfe

Data[1] Identify the frame 0xfe

Data[2] Data length frame 0x05

Data[3] Instruction frame 0x3a

Data[4] Joint number Joint

Data[5] Encoder is in a Low position Encoder_low

Data[6] Encoder is in a High position Encoder_high

Data[7] End frame 0xfa

1. Return data structure

Data domain	Description	Data
Data[0]	recognition frame	0XFE
Data[1]	recognition frame	0XFE
Data[2]	data length frames	0X05
Data[3]	instruction frame	0X3A
Data[4]	Joint serial number	Joint
Data[5]	High value of steering gear potential	Encoder_high
Data[6]	Low potential of steering gear	Encoder_low
Data[7]	End frame	0XFA

Example, set joint 2 to 2249 potential.

Example of serial port sending: FE FE 05 3A 01 08 C9 FA

Range of joint serial numbers: 0~5

byte Joint： data types

byte Encoder_high： data types

Calculation method: high bit value (hexadecimal) is taken

byte Encoder_low： data types

Calculation method: take potential value (hexadecimal) low position

Return Value： No

16.Gets the potential value;)

214

Data domain Description Data

Data[0] Recognition frame 0XFE

Data[1] Recognition frame 0XFE

Data[2] Data length frame 0X03

Data[3] Instruction frame 0X3B

Data[4] Joint serial number joint

Data[5] End frame 0XFA

Get the potential value of steering gear 1

Example of serial port sending: FE FE 03 3B 00 FA

Range of joint serial numbers: 1~6

Return data structure

Data domain Description Data

Data[0] Return recognition frame 0XFE

Data[1] Return recognition frame 0XFE

Data[2] Returns data length frames 0X04

Data[3] Returns the instruction frame 0X3B

Data[4] High value of steering gear potential Encoder_high

Data[5] Low potential of steering gear Encoders_low

Data[6] End frame 0XFA

Example of serial port return: FE FE 04 3B 08 C9 FA

Potential =2249

How to calculate the potential value

Potential value = low potential value + high potential value *256

1. Transmission of potential values for six steering gear

215

Data
domain Description Data

Data[0] Recognition frame 0XFE

Data[1] Recognition frame 0XFE

Data[2] Data length frame 0X15

Data[3] Instruction frame 0X3C

Data[4] 1 steering gear with high potential encoder_1_high

Data[5] Low byte potential of steering gear 1 encoder_1_low

Data[6] 2 steering gear with high potential encoder_2_high

Data[7] Low byte potential of steering gear 2 encoder_2_low

Data[8] 3 steering gear with high potential encoder_3_high

Data[9] Low byte potential of steering gear 3 encoder_3_low

Data[10] 4 steering gear with high potential
bytes encoder_4_high

Data[11] Low byte potential of steering gear 4 encoder_4_low

Data[12] 5 steering gear with high potential encoder_5_high

Data[13] Low byte potential of steering gear 5 encoder_5_low

Data[14] 6 steering gear with high potential encoder_6_high

Data[15] Low byte potential of steering gear 6 encoder_6_low

Data[16] Specify speed Sp

Data[17] End frame 0XFA

Send potential values for all motors

Example of serial port sending: FE FE 15 3C 00 00 00 00 00 00 00 00 00 00 00
00 20FA

(separate potential values sent over reference)

byte encoder_1_high： data types

Calculation method :1 steering gear potential value converted to int type and then
hexadecimal high byte

byte encoder_1_low： data types

Calculation method :1 steering gear potential value converted to int type and then
hexadecimal low byte

(Other Same)

Sp： data type byte range 0~100

Return Value： No

216

1. Read speed

Data domain Description Data

Data[0] Recognition frame 0XFE

Data[1] Recognition frame 0XFE

Data[2] Data length frame 0X02

Data[3] Instruction frame 0X40

Data[4] End frame 0XFA

Example of serial port sending: FE FE 02 40 FA

Return data structure

Data domain Description Data

Data[0] Return recognition frame 0XFE

Data[1] Return recognition frame 0XFE

Data[2] Returns data length frames 0X03

Data[3] Returns the instruction frame 0X40

Data[4] Specify speed Sp

Data[5] End frame 0XFA

Example of serial port return: FE FE 03 40 32 FA

1. Set speed

Data domain Description Data

Data[0] Recognition frame 0XFE

Data[1] Recognition frame 0XFE

Data[2] Data length frame 0X02

Data[3] Instruction frame 0X41

Data[4] Specify speed sp

Data[5] End frame 0XFA

Example of serial port sending: FE FE 02 41 32 FA

Return Value： No

1. Read FeedOverride(not open yet)

217

Data domain Description Data

Data[0] Recognition frame 0XFE

Data[1] Recognition frame 0XFE

Data[2] Data length frame 0X02

Data[3] Instruction frame 0X42

Data[4] End frame 0XFA

Return Value： No

1. Read acceleration (not yet open)

Data domain Description Data

Data[0] Recognition frame 0XFE

Data[1] Recognition frame 0XFE

Data[2] Data length frame 0X02

Data[3] Instruction frame 0X44

Data[4] End frame 0XFA

1. Read the minimum angle of the joint

Data domain Description Data

Data[0] Recognition frame 0XFE

Data[1] Recognition frame 0XFE

Data[2] Data length frame 0X03

Data[3] Instruction frame 0X4A

Data[4] Joint steering gear serial number Joint_number

Data[5] End frame 0XFA

Read

Example of serial port sending: FE FE 03 4A 00 FA

joint_no range: 0~5

Return data structure

218

Data domain Description Data

Data[0] Return recognition frame 0XFE

Data[1] Return recognition frame 0XFE

Data[2] Returns data length frames 0X04

Data[3] Returns the instruction frame 0X4A

Data[4] High angle of steering gear Angle_high

Data[5] Low angle of steering gear Angle_low

Data[6] End frame 0XFA

Example of serial port return: FE FE 04 4A 01 44 FA

Angle =90

How to get the minimum angle

temp =angle1_low+angle1_high*256

Angle1= temp \33000? (temp –65536): temp)/10

Calculation method: low angle value + high angle value multiplied by 256 to
determine whether it is greater than 33000 if it is greater than 33000 then subtract
65536 and divide 10 if directly divided by 10

1. Read the maximum angle of the joint

Data domain Description Data

Data[0] Recognition frame 0XFE

Data[1] Recognition frame 0XFE

Data[2] Data length frame 0X03

Data[3] Instruction frame 0X4B

Data[4] Joint steering gear serial number joint_number

Data[5] End frame 0XFA

Example of serial port sending: FE FE 03 4B 01 FA

Return data structure

219

Data domain Desccription Data

Data[0] Return recognition frame 0XFE

Data[1] Return recognition frame 0XFE

Data[2] Returns data length frames 0X04

Data[3] Returns the instruction frame 0X4B

Data[4] High angle of steering gear Angle_high

Data[5] Low angle of steering gear Angle_low

Data[6] End frame 0XFA

Example of serial port return: FE FE 04 4B 01 44 FA

joint_no range 0~5

How to get the maximum angle of the joint

temp =angle1_low+angle1_high*256

Angle1= temp \33000? (temp –65536): temp)/10

Calculation method: low angle value + high angle value multiplied by 256 to
determine whether it is greater than 33000 if it is greater than 33000 then subtract
65536 and divide 10 if directly divided by 10

1. View connection

Data domain Description Data

Data[0] Recognition frame 0XFE

Data[1] Recognition frame 0XFE

Data[2] Data length frame 0X03

Data[3] Instruction frame 0X50

Data[4] End frame 0XFA

Example of serial port sending: FE FE 03 50 FA

Return data structure

Data domain Description Data

Data[0] Return recognition frame 0XFE

Data[1] Return recognition frame 0XFE

Data[2] Returns data length frames 0X03

Data[3] Instruction frame 0X50

Data[4] Connected/unconnected 0X01/0X00

Data[5] End frame 0XFA

220

Example of serial port return: FE FE 03 50 00 FA

1. Check to see if the steering gear is all powered up

Data domain Description Data

Data[0] Recognition frame 0XFE

Data[1] Recognition frame 0XFE

Data[2] Data length frame 0X02

Data[3] Instruction frame 0X51

Data[4] End frame 0XFA

Example of serial port sending: FE FE 02 51 FA

Return data structure

Data domain Description Data

Data[0] Return recognition frame 0XFE

Data[1] Return recognition frame 0XFE

Data[2] Returns data length frames 0X03

Data[3] Instruction frame 0X51

Data[4] Electricity on/off 0X01/0X00

Data[5] End frame 0XFA

Example of serial port return: FE FE 03 51 00 FA

1. Read steering gear status

Data domain Description Data

Data[0] Recognition frame 0XFE

Data[1] Recognition frame 0XFE

Data[2] Data length frame 0X04

Data[3] Instruction frame 0X53

Data[4] Joint steering gear serial number joint_number

Data[5] Data data_id

Data[6] End frame 0XFA

Read Parameter of position P ratio of steering gear 1

Example of serial port sending: FE FE 04 53 00 21 FA

joint_no range 0~5

221

byte Data_id： data types

The values are taken in the table below

Address Function value
range initial value value

analysis

20 LED
alarm 0-254 0

1\0 = open
or close
LED alarm

21 Speed
loop P 0-254 123joint8,456joint5

control the
proportional
coefficient
of the
motor

22 Position
ring I 0-254 123joint20,456joint13

control the
differential
coefficient
of the
motor

23 Position
ring D 0-254 0

control the
integral
coefficient
of the
motor

24
minimum
starting
force

0-
1000 0

set the
minimum
output
torque1000
= 100%

Return data structure

Data domain Description Data

Data[0] Return recognition frame 0XFE

Data[1] Return recognition frame 0XFE

Data[2] Returns data length frames 0X03

Data[3] Returns the instruction frame 0X53

Data[4] Return data data_state

Data[5] End frame 0XFA

Example of serial port return: FE FE 03 53 00 FA

1. Set steering gear zero

222

Data domain Description Data

Data[0] Recognition frame 0XFE

Data[1] Recognition frame 0XFE

Data[2] Data length frame 0X03

Data[3] Instruction frame 0X55

Data[4] Joint steering gear serial number joint_number

Data[5] End frame 0XFA

Example of serial port sending: FE FE 03 55 00 FA

Return Value： No

1. Brake single motor (not yet open)

Data domain Description Data

Data[0] Recognition frame 0XFE

Data[1] Recognition frame 0XFE

Data[2] Data length frame 0X03

Data[3] Instruction frame 0X56

Data[4] Joint steering gear serial number joint_number

Data[5] End frame 0XFA

Example of serial port sending: FE FE 03 56 00 FA

Return Value： No

1. Setting atom Pin Mode

Data domain Description Data

Data[0] Recognition frame 0XFE

Data[1] Recognition frame 0XFE

Data[2] Data length frame 0X04

Data[3] Instruction frame 0X60

Data[4] Number of pins pin_no

Data[5] Pin mode pin_mode

Data[6] End frame 0XFA

atom pin16 set to output mode 0

Example of serial port sending: FE FE 04 60 19 00 FA

byte Pin_no： data types

223

byte Pin_mode： data types

Return Value： No

1. The program paused

Data domain Description Data

Data[0] Recognition frame 0XFE

Data[1] Recognition frame 0XFE

Data[2] Data length frame 0X02

Data[3] Instruction frame 0X26

Data[4] End frame 0XFA

Example of serial port sending: FE FE 02 26 FA

Return Value： No

1. The program continues to run

Data domain Description Data

Data[0] Recognition frame 0XFE

Data[1] Recognition frame 0XFE

Data[2] Data length frame 0X02

Data[3] Instruction frame 0X27

Data[6] End frame 0XFA

Example of serial port sending: FE FE 02 27 FA

Return Value： No

1. The program stops running

Data Description Data

Data[0] Recognition frame 0XFE

Data[1] Recognition frame 0XFE

Data[2] Data length frame 0X02

Data[3] Instruction frame 0X28

Data[4] End frame 0XFA

Example of serial port sending: FE FE 02 28 FA

Return Value： No

224

1. Set steering gear status

Data domain Description Data

Data[0] Recognition frame 0XFE

Data[1] Recognition frame 0XFE

Data[2] Data length frame 0X05

Data[3] Instruction frame 0X52

Data[4] Joint steering gear serial number servo_no

Data[5] Steering gear status servo_state

Data[6] Data servo_data

Data[7] End frame 0XFA

Set position P ratio Parameter 1

Example of serial port sending: FE FE 05 52 00 21 01 FA

Return Value： No

1. Robot free mode (turn off all torque output)

Data domain Description Data

Data[0] Recognition frame 0XFE

Data[1] Recognition frame 0XFE

Data[2] Data length frame 0X02

Data[3] Instruction frame 0X13

Data[4] End frame 0XFA

Example of serial port sending: FE FE 02 13 FA

Return Value： No

1. Set atom screen RGB light color

225

Data domain Description Data

Data[0] Recognition frame 0XFE

Data[1] Recognition frame 0XFE

Data[2] Data length frame 0X05

Data[3] Instruction frame 0X6A

Data[4] R R

Data[5] G G

Data[6] B B

Data[7] End frame 0XFA

RGB set to blue

Example of serial port sending: FE FE 05 6A 00 00 FF FA

Return Value： No

1. Setting Claw Angle

Data domain Description Data

Data[0] Recognition frame 0XFE

Data[1] Recognition frame 0XFE

Data[2] Data length frame 0X03

Data[3] Instruction frame 0X66

Data[4] Claw Data Gripper_data

Data[5] End frame 0XFA

Example of serial port sending: FE FE 03 66 00 FA

Gripper_data： data type byte range 0-1

Return Value： No

1. Set FeedOverride (not open yet)

226

Data domain Description Data

Data[0] Recognition frame 0XFE

Data[1] Recognition frame 0XFE

Data[2] Data length frame 0X04

Data[3] Instruction frame 0X43

Data[4] Feed_override high Feed_override_high

Data[5] Feed_override low Feed_override_low

Data[6] End frame 0XFA

1. Set acceleration (not open yet)

Data domain Description Data

Data[0] Recognition frame 0XFE

Data[1] Recognition frame 0XFE

Data[2] Data length frame 0X04

Data[3] Instruction frame 0X45

Data[4] High acceleration values acceleration_high

Data[5] Acceleration low acceleration_low

Data[6] End frame 0XFA

byte acceleration_high： data types

Calculation method: the acceleration value multiplied by 10 is converted to int
format and then hexadecimal high byte

byte acceleration_low： data types

Calculation method: the acceleration value multiplied by 10 is converted to int
format and then hexadecimal low byte

1. Set minimum angle of joint

227

Data domain Description Data

Data[0] Recognition frame 0XFE

Data[1] Recognition frame 0XFE

Data[2] Data length frame 0X05

Data[3] Instruction frame 0X4C

Data[4] Joint steering gear serial number Joint

Data[5] High angle Angle_high

Data[6] Low angle Angle_low

Data[7] End frame 0XFA

Set the minimum angle to 90

Example of serial port sending: FE FE 05 4C 00 01 44 FA

Joint range 0~5

byte angle_high： data types

Calculation: angle value multiplied by 10 converted to int form and then
hexadecimal high byte

byte angle_low： data types

Calculation: angle value multiplied by 10 converted to int form and then
hexadecimal low byte

Return Value： No

1. Set the maximum angle of the joint

Data domain Description Data

Data[0] Recognition frame 0XFE

Data[1] Recognition frame 0XFE

Data[2] Data length frame 0X05

Data[3] Instruction frame 0X4D

Data[4] Joint steering gear serial number Joint

Data[5] High angle Angle_high

Data[6] Low angle Angle_low

Data[7] End frame 0XFA

<<<<<<< HEAD set maximum angle to 90

Example of serial port sending: FE FE 05 4D 00 01 44** **FA

Example of serial port sending: FE FE 02 12 FA

228

Return Value： Yes

Joint range 0~5

byte of <<<<<<<HEAD angle_high： data types

Calculation method: angle value multiplied by 10 converted to int form and
then hexadecimal high byte

Example of serial port sending: FE FE 02 20 FA

Return Value： Yes

Example of serial port return: FE FE 0E 20 06 E6 EA 4E C4 81 0B BD EA C0 02
B6 FA

byte angle_low： data types

Calculation: angle value multiplied by 10 converted to int form and then
hexadecimal low byte

Return Value： No

1. Set the Tool Coordinate System

Data domain Description Data

Data[0] Recognition frame 0XFE

Data[1] Recognition frame 0XFE

Data[2] Data length frame 0X14

Data[3] Instruction frame 0X81

Data[4] X coordinates high byte x_high

Data[5] X coordinates low byte x_low

Data[6] Y coordinates high byte y_high

Data[7] Y coordinates low byte y_low

Data[8] Z coordinates high byte z_high

Data[9] Z coordinates low byte z_low

Data[10] RX coordinates high byte rx_high

Data[11] RX coordinates low byte rx_low

Data[12] RY coordinates high byte ry_high

Data[13] RY coordinates low byte ry_low

Data[14] RZ coordinates high byte rz_high

Data[15] RZ coordinates low byte rz_low

Data[16] End frame 0XFA

229

Set tool coordinate system (-14,-27,275,-89.5,0.7,-90.7),

Example of serial port sending: FE FE 14 81FF 74FE EE 0A C1DD 05 00 48DC
95FA

byte x_high： data types

Calculation: x coordinates multiplied by 10 and then high bytes in hexadecimal

byte x_low： data types

Calculation: x coordinates multiplied by 10 and then hexadecimal low bytes

(y axis coordinates z axis coordinates are the same)

byte rx_high： data types

Calculation: rx coordinate value multiplied by 100 and then hexadecimal high byte

byte rx_low： data types

Calculation: rx coordinate value multiplied by 100 and then hexadecimal low byte

(ry axis coordinates rz axis coordinates are the same)

Return Value： No

1. Setting the world coordinate system

230

Data domain Description Data

Data[0] Recognition frame 0XFE

Data[1] Recognition frame 0XFE

Data[2] Data length frame 0X14

Data[3] Instruction frame 0X83

Data[4] X coordinates high byte x_high

Data[5] X coordinates low byte x_low

Data[6] Y coordinates high byte y_high

Data[7] Y coordinates low byte y_low

Data[8] Z coordinates high byte z_high

Data[9] Z coordinates low byte z_low

Data[10] RX coordinates high byte rx_high

Data[11] RX coordinates low byte rx_low

Data[12] RY coordinates high byte ry_high

Data[13] RY coordinates low byte ry_low

Data[14] RZ coordinates high byte rz_high

Data[15] RZ coordinates low byte rz_low

Data[16] End frame 0XFA

Set the world coordinate system (-14,-27,275,-89.5,0.7,-90.7),

Example of serial port sending: FE FE 14 83 FF 74 FE EE 0A C1 DD 05 00 48
DC 95 FA

byte x_high： data types

Calculation: x coordinates multiplied by 10 and then high bytes in hexadecimal

byte x_low： data types

Calculation: x coordinates multiplied by 10 and then hexadecimal low bytes

(y axis coordinates z axis coordinates are the same)

byte rx_high： data types

Calculation: rx coordinate value multiplied by 100 and then hexadecimal high byte

<<<<<<<HEAD

<<<<<<< HEAD

byte rx_low： data types

231

Example of serial port sending: FE FE 05 30 01 01 32 FA Range of joint serial
numbers 1~6 di：data type byte value range 0 and 1 sp：data type range 0-
100%

no Return Value

f8f31e0282f58b3f27f944c8d7a6ac99
dc0185de

Calculation: rx coordinate value multiplied by 100 and then hexadecimal low byte

(ry axis coordinates rz axis coordinates are the same)

Return Value： No

1. Gets the tool coordinate

Data domain Description Data

Data[0] Recognition frame 0XFE

Data[1] Recognition frame 0XFE

Data[2] Data length frame 0X02

Data[3] Instruction frame 0X82

Data[4] End frame 0XFA

Example of serial port sending: FE FE 02 82 FA

Return data structure

232

Data domain Description Data

Data[0] Return recognition frame 0XFE

Data[1] Return recognition frame 0XFE

Data[2] Returns data length frames 0X14

Data[3] Returns the instruction frame 0X82

Data[4] X coordinates high byte x_high

Data[5] X coordinates low byte x_low

Data[6] Y coordinates high byte y_high

Data[7] Y coordinates low byte y_low

Data[8] Z coordinates high byte z_high

Data[9] Z coordinates low byte z_low

Data[10] RX coordinates high byte rx_high

Data[11] RX coordinates low byte rx_low

Data[12] RY coordinates high byte ry_high

Data[13] RY coordinates low byte ry_low

Data[14] RZ coordinates high byte rz_high

Data[15] RZ coordinates low byte rz_low

Data[16] End frame 0XFA

Example of serial port return: FE FE 14 82 FF 74 FE EE 0A C1DD 05 00 48 DC
95 FA

byte x_high： data types

Mode of calculation: x coordinates multiplied by 10 are converted to int type and
then hexadecimal high bytes

byte x_low： data types

Mode of calculation: x coordinates multiplied by 10 are converted to int type and
then hexadecimal low bytes

(y axis coordinates z axis coordinates are the same)

byte rx_high： data types

Mode of calculation: rx coordinates multiplied by 100 are converted to int type and
then hexadecimal high bytes

byte rx_low： data types

Mode of calculation: rx coordinates multiplied by 100 are converted to int type and
then hexadecimal low bytes

(ry axis coordinates rz axis coordinates are the same)

233

1. Get the world coordinate system

Data domain Description Data

Data[0] Recognition frame 0XFE

Data[1] Recognition frame 0XFE

Data[2] Data length frame 0X02

Data[3] Instruction frame 0X84

Data[4] End frame 0XFA

Example of serial port sending: FE FE 02 84 FA

Return data structure

Data domain Description Data

Data[0] Return recognition frame 0XFE

Data[1] Return recognition frame 0XFE

Data[2] Returns data length frames 0X14

Data[3] Returns the instruction frame 0X84

Data[4] X coordinates high byte x_high

Data[5] X coordinates low byte x_low

Data[6] Y coordinates high byte y_high

Data[7] Y coordinates low byte y_low

Data[8] Z coordinates high byte z_high

Data[9] Z coordinates low byte z_low

Data[10] RX coordinates high byte rx_high

Data[11] RX coordinates low byte rx_low

Data[12] RY coordinates high byte ry_high

Data[13] RY coordinates low byte ry_low

Data[14] RZ coordinates high byte rz_high

Data[15] RZ coordinates low byte rz_low

Data[16] End frame 0XFA

Example of serial port return: FE FE 14 84 FF 74 FE EE 0A C1 DD 05 00 48 DC
95 FA

1. Set up flange base coordinate system

234

Data domain Description Data

Data[0] Recognition frame 0XFE

Data[1] Recognition frame 0XFE

Data[2] Data length frame 0X03

Data[3] Instruction frame 0X85

Data[4] RFType 0x00/0x01

Data[5] End frame 0XFA

Example of serial port sending: FE FE 03 85 00FA

byte RFType： data types

Value range :0~1 BASE =0; WORLD BASE =1;

The RFType：：BASE is to take the robot base as the base coordinate,
RFType：：WORLD the world coordinate system as the base coordinate.

1. Get the flange base coordinate system

Data domain Description Data

Data[0] Recognition frame 0XFE

Data[1] Recognition frame 0XFE

Data[2] Data length frame 0X02

Data[3] Instruction frame 0X86

Data[4] End frame 0XFA

Example of serial port sending: FE FE 02 86 FA

Return data structure

Data domain Description Data

Data[0] Return recognition frame 0XFE

Data[1] Return recognition frame 0XFE

Data[2] Returns data length frames 0X03

Data[3] Returns the instruction frame 0X86

Data[4] RFType 0x00/0x01

Data[5] End frame 0XFA

Example of serial port return: FE FE 03 86 00 FA

1. Set the terminal coordinate system

235

Data domain Description Data

Data[0] Return recognition frame 0XFE

Data[1] Return recognition frame 0XFE

Data[2] Returns data length frames 0X03

Data[3] Returns the instruction frame 0X89

Data[4] EndType 0x00/0x01

Data[5] End frame 0XFA

Example of serial port sending: FE FE 03 89 00 FA

Return Value： No

byte EndType： data types

Value range :0~1 FLANGE =0; TOOL FLANGE =1;

EndType：：FLANGE to set the end to flange, EndType：：TOOL to set the end
to tool end.

1. Get the terminal coordinate system

Data domain Description Data

Data[0] Recognition frame 0XFE

Data[1] Recognition frame 0XFE

Data[2] Data length frame 0X02

Data[3] Instruction frame 0X8A

Data[4] End frame 0XFA

Example of serial port sending: FE FE 02 8A FA

Return data structure

Data domain Description Data

Data[0] Return recognition frame 0XFE

Data[1] Return recognition frame 0XFE

Data[2] Returns data length frames 0X03

Data[3] Returns the instruction frame 0X8A

Data[4] EndType 0x00/0x01

Data[5] End frame 0XFA

Example of serial port return: FE FE 03 8A 00 FA

1. Single motor shutdown

236

Data domain Description Data

Data[0] Recognition frame 0XFE

Data[1] Recognition frame 0XFE

Data[2] Data length frame 0X03

Data[3] Instruction frame 0X56

Data[4] Steering gear serial number Servo_no

Data[5] End frame 0XFA

Turn down the first steering gear

Example of serial port sending: FE FE 03 56 01 FA

Return Value： No

1. Single motor powered on

Data domain Description Data

Data[0] Recognition frame 0XFE

Data[1] Recognition frame 0XFE

Data[2] Data length frame 0X02

Data[3] Instruction frame 0X57

Data[4] Steering gear serial number Servo_no

Data[5] End frame 0XFA

Power the steering gear one

Example of serial port sending: FE FE 03 57 01 FA

Return Value： No

1. Setting Atom IO port level state

Data domain Description Data

Data[0] Recognition frame 0XFE

Data[1] Recognition frame 0XFE

Data[2] Data length frame 0X04

Data[3] Instruction frame 0X61

Data[4] Number of pins Pin_no

Data[5] Level signal 0X00/0X01

Data[6] End frame 0XFA

set pin P22 to high level

237

Example of serial port sending: FE FE 04 61 22 01 FA

Return Value： No

1. Read Atom IO port level state

Data domain Description Data

Data[0] Recognition frame 0XFE

Data[1] Recognition frame 0XFE

Data[2] Data length frame 0X03

Data[3] Instruction frame 0X62

Data[4] Number of pins pin_no

Data[5] End frame 0XFA

Read pin P22 level state

Example of serial port sending: FE FE 03 62 22 FA

Return data structure

Data domain Description Data

Data[0] Return recognition frame 0XFE

Data[1] Return recognition frame 0XFE

Data[2] Returns data length frames 0X03

Data[3] Returns the instruction frame 0X62

Data[4] Level state 0X00/0X01

Data[5] End frame 0XFA

1. Set Atom pin PWM mode

Data domain Description Data

Data[0] Recognition frame 0XFE

Data[1] Recognition frame 0XFE

Data[2] Data length frame 0X04

Data[3] Instruction frame 0X63

Data[4] Number of pins pin_no

Data[5] Channels channel

Data[6] End frame 0XFA

Example of serial port sending: FE FE 04 63 22 01 FA

238

Return Value： No

1. Set Atom pin PWM output

Data domain Description Data

Data[0] Recognition frame 0XFE

Data[1] Recognition frame 0XFE

Data[2] Data length frame 0X04

Data[3] Instruction frame 0X64

Data[4] Channels channel

Data[5] Duty cycle Pin_val

Data[6] End frame 0XFA

Example of serial port sending: FE FE 04 64 01 20 FA

Return Value： No

1. Reading Claw Angle

Data domain Description Data

Data[0] Recognition frame 0XFE

Data[1] Recognition frame 0XFE

Data[2] Data length frame 0X02

Data[3] Instruction frame 0X65

Data[4] End frame 0XFA

Example of serial port sending: FE FE 02 65 FA

Return data structure

Data domain Description Data

Data[0] Return recognition frame 0XFE

Data[1] Return recognition frame 0XFE

Data[2] Returns data length frames 0X04

Data[3] Instruction frame 0X65

Data[4] High angle Value_high

Data[5] Low angle Value_low

Data[6] End frame 0XFA

1. Set Claw Mode

239

Data domain Description Data

Data[0] Recognition frame 0XFE

Data[1] Recognition frame 0XFE

Data[2] Data length frame 0X04

Data[3] Instruction frame 0X66

Data[4] Claw opening and closing 0X00/0X01

Data[5] Speed Sp

Data[6] End frame 0XFA

Set the claw to open at 20

Example of serial port sending: FE FE 04 66 00 20 FA

Return Value： No

1. Set Claw Angle

Data domain Decription Data

Data[0] Recognition frame 0XFE

Data[1] Recognition frame 0XFE

Data[2] Data length frame 0X05

Data[3] Instruction frame 0X67

Data[4] High angle Angle_high

Data[5] Low angle Angle_low

Data[6] Speed Sp

Data[7] End frame 0XFA

Sample serial port sending:

Return Value： No

1. Claw setting zero

Data domain Description Data

Data[0] Recognition frame 0XFE

Data[1] Recognition frame 0XFE

Data[2] Data length frame 0X02

Data[3] Instruction frame 0X68

Data[4] End frame 0XFA

240

Set the current position of the claw to zero

Example of serial port sending: FE FE 02 68 FA

1. Check the movement of the claw

Data domain Description Data

Data[0] Recognition frame 0XFE

Data[1] Recognition frame 0XFE

Data[2] Data length frame 0X02

Data[3] Instruction frame 0X69

Data[4] End frame 0XFA

Set the current position of the claw to zero

Example of serial port sending: FE FE 02 69 FA

Return data structure

Data domain Description Data

Data[0] Return recognition frame 0XFE

Data[1] Return recognition frame 0XFE

Data[2] Returns data length frames 0X03

Data[3] Instruction frame 0X69

Data[4] 0X00/0X01

Data[5] End frame 0XFA

Appendix:

A coordinate transformation program is added to the ATOM library and the
kinematics library, which is implemented as follows:

1. change the terminal coordinate system
2. can set the end coordinate system by setEndType and getEndType functions,

EndType：：FLANGE to set the end to flange, EndType：：TOOL to set the
end to tool end.

3. can set the coordinate information of the reading tool by setToolReference
and getToolReference functions. The flange coordinate system is set as the
relative coordinate system, and the tool end information is relative to the
flange coordinate system.

4. set the EndType to FLANGE, both the GetCoords and the WriteCoords
methods are calculated by the flange position.

5. set the EndType to TOOL, both the GetCoords and the WriteCoords methods
are calculated at the end position of the tool.

241

6. Change the base coordinate system
7. base coordinate system can be set by setReferenceFrame function,

RFType：：BASE the robot base as the base coordinate and the world
coordinate system as the base coordinate. getReferenceFrame function is to
read the current base coordinate system type.

8. read base coordinate system information can be set by setWorldReference
and getWorldReference functions. When set, the world coordinate system is
used as the relative coordinate system, and the position information of the
base of the robot relative to the world coordinate system is input.

9. when the base coordinate system is the base, the GetCoords and
WriteCoords methods take the base as the reference coordinate system.

10. When the base coordinate system is the world coordinate system, both the
GetCoords and WriteCoords methods use the world coordinate system as
the reference coordinate system.

Communications related changes (temporary)

The setting and reading of the terminal coordinate system, the setting and reading
of the world coordinate system, the setting and reading of the current reference
coordinate system, the setting and reading of the terminal type, the setting and
reading of the moving mode, and the sending and receiving of the manipulator
information are added.

These communications are temporarily set to 0x80 to 0x8A

The new roboticMessages space in the ParameterList.h file is used to add the
manipulator communication information.

MOVEL function simple design idea is as follows:

The Euclidean distance between the initial point and the target point is obtained,
and an interpolation point is inserted every 10 mm based on the Euclidean
distance. If the interpolation point has no inverse solution, search position
invariant three directions attitude positive and negative PI/30 adjacent space
whether there are inverse solutions, mainly to avoid singular values and some
special positions that can not be solved.

The point transmission interval between MOVEL and JOG is changed to dynamic
time. The moving time is calculated according to the maximum joint moving
distance between two points, and then the moving time minus the specific time is
taken as the time interval.

242

7 Accessories
myCobot accessories includes

End Effectors

Parallel Gripper
Adaptive Gripper
Opening Angle Gripper
Suction Pump

Bases

G Base
Flat Base

Accessories

JoyStick
Battery Box

243

7.1 End Effectors
End effectors of myCobot now in mass production

Parallel Gripper: Use of Clamping Objects
Suction Pump: Use of adsorption objects

244

7.1.1 Gripper
Gripper

1.fix the gripper to the top of the robotic arm with a lego tech and connect to
the M5STACK Basic end-effector extension interface (described in the
unboxing video)
2.grippers can be used in all development environments, such as ROS、
Arduino、UIFlow and RoboFlow.

Applicable objects

small box
small ball
long strip

Tips you can paste rubber at the fingertips of the gripper for better friction.

245

API control you can control gripper by downloading the latest myCobot API.

246

1. Control the opening and closing degree of the claw：please read the claw
position first, then set the range. The value range is 0-4096; the actual range is
near 2000.

2. Set the initial point of the claw：the initial point corresponds to a closing
degree of 2048.

setGripperIni() // set gripper encode initial center point(to be 2048) 3. Read
gripper position

getGripperValue() // return gripper encdoer value (from 0 to 4096) 4 设置夹爪状
态：现阶段只支持张开闭合两个状态，如果需要设置精准位置，可以设置夹爪闭合

程度；

setGripperState // only used for adaptive gripper, 0 or 1 for open and close

247

7.1.2 Suction pump
Applicable object

Paper/plastics
Smooth planar object
Cards, etc

Product Description

Installation schematic

248

wiring diagram

Notes
Please ensure that the product is connected successfully according to the
instructions
Make sure the product is powered by attached adapter
Please ensure the access direction of positive and negative electrodes

Use of suction pump in Arduino
1. connect the suction pin to the Basic pin

solenoid valve control pin link Basic -G2 pin
Pump control pin link Basic -G5 pin

2. create a new Arduino program to copy the following:

249

set pin 2 to high level and close solenoid valve//
// please confirm solenoid valve connection G2 pin, pump link G5 pin
// connection completed, high level off, low level open
//

void setup() {
 // put your setup code here, to run once:
 Serial.begin(9600);//open serial port, baud rate 9600
 pinMode(2,OUTPUT); //set pin G2 to output state
 pinMode(5,OUTPUT); //set pin G5 to output state
 delay(100);
 digitalWrite(2,1);//set pin 2 to high level and close solenoid valve
 digitalWrite(5,1);//set pin 5 to high level and shut down pump
}

void loop() {
 // 使用时按照需求控制电磁阀与泵机
 digitalWrite(5,0);//将引脚5设为低电平，打开泵机
 delay(200);//延时200ms
 digitalWrite(2,0);//将引脚2设为低电平，打开电磁阀
 delay(2000);//延时2000ms,松开吸住的物体
 digitalWrite(2,1);//将引脚2设为高电平，关闭电磁阀
 delay(200);//延时200ms
 digitalWrite(5,1);//将引脚5设为高电平，关闭泵机
 delay(200);//延时200ms
}

Use of suction pumps in UIflow
1. connect the suction pin to the Baisc pin

Solenoid valve control pin link Basic -G2 pin
Pump control pin link Basic -G5 pin

2. Create a new UIFlow program to add the following content:

250

7.1.3 Pen holder
Is being developed and written...ss

251

7.2 Base
myCobot current support base:

G Base: Conveniently secured to table
Sucking Base: Easy to fix directly on smooth table

252

7.2.1 G Base

G Base - fixed to the edge of the table

1.Tighten the horn screws at both ends and insert a rubber sleeve into the he
2.Fix the base on the edge of the table with a G clip
3.The base and the bottom of the arm with the attached Lego tech
4.Make sure it’s stable before use

253

7.2.2 Sucking Base

Suitable for smooth surfaces

1.Install the sucker at the four corners of the base and tighten them
2.Use the attached Lego piece to connect the sucking base and the bottom of
the manipulator
3.Fix the four suckers to a smooth and flat surface before use

Tips
A small amount of non-conductive liquids can be added under the sucker to fill
the gap between the sucker and the desktop to obtain the best adsorption effect.

254

7.3 Accessories
Is being developed and written...

255

8 Machine Vision Development

What is image recognition?
1. principle of image recognition

Image recognition refers to the technology of using computers to
process, analyze and understand images in order to identify targets and
objects of various modes. It is a practical application of deep learning
algorithms.

2. Application scenarios of image recognition

At the present stage, image recognition technology is generally divided
into face recognition and commodity recognition. Face recognition is
mainly used in security check, identity verification and mobile payment.
Product identification is mainly used in the process of commodity
circulation, especially in unmanned retail areas such as unmanned
shelves and intelligent retail cabinets.

3. Artificial intelligence application of image recognition

Image recognition is an important field of artificial intelligence. Different
image recognition models have been proposed in order to make
computer programs simulating human image recognition activities. An
example is the template matching model. This model holds that to
recognize an image, one must have a memory pattern of the image in
the past experience, also known as the template. If the current stimulus
matches the template in the brain, the image is recognized. For example,
if there is a letter “A”, the letter “A” is recognized if the size, orientation,
and shape of the letter “A” are exactly the same as the template of "A" in
the mind. The model is simple and straightforward, and easy to be
applied in practice. However, this model emphasizes that the image must
be completely consistent with the template in the brain before it can be
recognized. In fact, people can not only recognize the image that is
completely consistent with the template in the brain, but also recognize
the image that is not completely consistent with the template. For
example, people can identify not only a specific letter “A”, but also
printed, handwritten, misaligned, and different-sized letters “A”. At the
same time, people can recognize a large number of images, if the
recognition of each image has a corresponding template in the brain, it is
impossible.
In order to solve the problem of template matching model, Gestalt
psychologists put forward a prototype matching model. According to this
model, what is stored in long-term memory is not the innumerable
templates to be recognized, but some "similarity" of the images. The
"similarity" abstracted from the image can be used as a prototype to test
the image to be recognized .If a similar prototype can be found, the
image is identified. This model is better than template-matching models,

256

both in the process of neural and memory exploration, and it can also
explain the recognition of images that are irregular, but in some ways
similar to the prototype. However, this model does not explain how
people can identify and process similar stimuli, and it is difficult to
implement in a computer program. Therefore, a more complex model is
proposed, that is, the "pan-demonic" recognition model.
In industrial applications, pictures are usually taken by industrial
cameras, and then processed by software according to the grayscale
difference of the picture to identify useful information. The representative
of the image recognition software is Connex.

4. development of image recognition

The development of image recognition has experienced three stages:
character recognition, digital image processing and recognition, and
object recognition. The research of character recognition began in 1950.
It is generally used to recognize letters, numbers and symbols. It is
widely used from printed character recognition to handwritten character
recognition.
The research of digital image processing and recognition began in 1965.
Compared with analog images, digital images have great advantages
such as storage, convenient transmission and compression, not easy
distortion in transmission and convenient processing, which provide a
powerful impetus for the development of image recognition technology.
Object recognition mainly refers to the perception and understanding of
the object and environment of the three-dimensional world, which
belongs to advanced computer vision. It is based on the digital image
processing and recognition of the combination of artificial intelligence,
systems science and other disciplines research, its research results have
been widely used in a variety of industrial and exploring robots. One of
the shortcomings of modern image recognition technology is the poor
adaptive performance. Once the target image is polluted by strong noise
or the target image has large imperfection, there will not be an ideal
identification result.
The mathematical nature of image recognition is a mapping problem
from pattern space to category space. At present, there are mainly three
recognition methods: statistical pattern recognition, structural pattern
recognition and fuzzy pattern recognition in the development of image
recognition.Image segmentation is a key technology in image
processing. Since the 1970s, its research has a history of several
decades and has been highly valued by people. Up to now, thousands of
segmentation algorithms have been proposed with the help of various
theories, and the research in this field is still being actively carried out.
There are many kinds of existing image segmentation methods,
including threshold segmentation, edge detection, region extraction, and
the segmentation method combined with specific theoretical tools. From
the type of image to include: gray image segmentation, color image
segmentation and texture image segmentation. As early as 1965,
someone proposed the edge detection operator, which resulted in many
classical edge detection algorithms. However, in the past 20 years, with

257

the rapid development of image segmentation based on histogram and
wavelet transform, computing technology and VLSI technology, the
research on image processing has made great progress. Image
segmentation methods combine some specific theories, methods and
tools, such as image segmentation based on mathematical morphology,
segmentation based on wavelet transform, and segmentation based on
genetic algorithm.

Use StivckV + Maixpy - IDE to image
recognition development

Development Platform
Maixpy - IDE

Development Environment

Windows
Linux

Developer Components

M5Stack - StickV

258

Description

M5Stick-V RISC-V AI Camera

M5Stack recently launched the new AIoT(AI+IoT) Camera powered by Kendryte
K210 -an edge computing system-on-chip(SoC) with dual-core 64bit RISC-V CPU
and advanced neural network processor..

M5StickV AI Camera possesses machine vision capabilities, equips OmniVision
OV7740 image sensor, adopts OmniPixel®3-HS technology, provides optimum
low light sensitivity, supports various vision identification capabilities. (e.g. Real-
time acquisition of the size, type and coordinates of the detected target) In
addition to an OV7740 sensor, M5StickV features more hardware resources such
as a speaker with built-in I2S Class-D DAC, IPS screen, 6-axis IMU, 200mAh Li-
po battery, and more.

It is able to perform convolutional neural network calculations at low power
consumption, so M5StickV will be a good zero-threshold machine vision
embedded solution. It is in support with MicroPython, which makes your code to
be more concise when you use M5stick-V for programming.

Product Features

Dual-Core 64-bit RISC-V RV64IMAFDC (RV64GC) CPU / 400Mhz(Normal)
Dual Independent Double Precision FPU
Neural Network Processor(KPU) / 0.8Tops

259

Field-Programmable IO Array (FPIOA)
Dual hardware 512-point 16bit Complex FFT
SPI, I2C, UART, I2S, RTC, PWM, Timer Support
AES, SHA256 Accelerator
Direct Memory Access Controller (DMAC)
Micropython Support
Firmware encryption support
Case Material: PC + ABS

Applications

Face recognition/detection
Object detection/classification
Obtaining size and coordinates of the target in real-time
Obtaining the type of detected target in real-time
Shape recognition
Video/Display
Game simulator

USB Drive problems

M5StickV may not work without driver in some systems. Users can manually
installFTDI to fix this problem.

https://ftdichip.com/drivers/vcp-drivers/

260

Resources Parameter

Kendryte
K210

Dual core 64-bit RISC-V RV64IMAFDC（RV64GC）CPU
/ 400Mhz（Normal）

SRAM 8MiB

Flash 16M

Power input 5V @ 500mA

KPU
parameter
size
of neural
network

5.5MiB-5.9MiB

Port TypeC x 1，GROVE（I2C + I / 0 + UART）x 1

RGB LED RGBW x 1

Button Custom buttonx 2

IPS screen 1.14 TFT，135 * 240，ST7789

Camera OV7740(30w pixels)

FOV 55deg

PMU AXP192

Battery 200mAh

External
storage TF-card（microSD）

MEMS MPU6886

Net weight 23g

Gross weight 82g

Product Size 48 24 22mm

Package
Size 144 44 43mm

Case
Material Plastic（PC）

TF-card（microSD）test

M5StickV not currently recognize all types of TF-card(microSD). We have
tested some common TF-card(microSD). The test results are as follows.

261

Brand Storage Type Class Format Test Results

Kingston 8G HC Class4 FAT32 ok

Kingston 16G HC Class10 FAT32 ok

Kingston 32G HC Class10 FAT32 no

Kingston 64G XC Class10 FAT文
件

ok

SanDisk 16G HC Class10 FAT32 ok

SanDisk 32G HC Class10 FAT32 ok

SanDisk 64G XC Class10 / no

SanDisk 128G XC Class10 / no

XIAKE 16G HC Class10 FAT32 ok（purple）

XIAKE 32G HC Class10 FAT32 ok

XIAKE 64G XC Class10 / no

XIAKE 32G HC Class10 / no

Functional Description

Kendryte K210

The Kendryte K210 is a system-on-chip (SoC) that integrates machine vision.
Using TSMC’s ultra-low-power 28-nm advanced process with dualcore 64-bit
processors for better power efficiency, stability and reliability. The SoC strives for ”
zero threshold” development and to be deployable in the user’s products in the
shortest possible time, giving the product artificial intelligence

Machine Vision
Better low power vision processing speed and accuracy
KPU high performance Convolutional Neural Network (CNN) hardware
accelerator
Advanced TSMC 28nm process, temperature range -40°C to 125°C
Firmware encryption support
Unique programmable IO array maximises design flexibility
Low voltage, reduced power consumption compared to other systems with
the same processing power
3.3V/1.8V dual voltage IO support eliminates need for level shifters

CPU

262

The chip contains a high-performance, low power RISC-V ISA-based dual core
64-bit CPU with the following features:

Core Count： Dual-core processor
Bit Width: 64-bit CPU 400MHz
Frequency: 400MHz
ISA extensions: IMAFDC
FPU: Double Precision
Platform Interrupts: PLIC
Local Interrupts: CLINT
I-Cache: 32KiB x 2
D-Cache: 32KiB x 2
On-Chip SRAM: 8MiB

OV7740

support for output formats: RAW RGB and YUV
support for image sizes: VGA, QVGA, CIF and any size smaller
support for black sun cancellation
support for internal and external frame synchronization
standard SCCB serial interface
digital video port (DVP) parallel output interface
embedded one-time programmable (OTP) memory
on-chip phase lock loop (PLL)
embedded 1.5 V regulator for core
Sophisticated Edge Rate Control Enables Filterless Class D Outputs
77dB PSRR at 1kHz
Low RF Susceptibility Rejects TDMA Noise from GSM Radios
Extensive Click-and-Pop Reduction Circuitry
array size: 656 x 488
power supply: – core: 1.5VDC ± 5% – analog: 3.3V ± 5% – I/O: 1.7 ~ 3.47V
temperature range: – operating: -30° C to 70°C – stable image: 0° C to 50° C
output format: – 8-/10-bit raw RGB data – 8-bit YUV
lens size: 1/5"
input clock frequency: 6 ~ 27 MHz
max image transfer rate: VGA (640x480): 60 fps – QVGA (320 x 240): 120 fp
sensitivity: 6800 mV/(Lux-sec)
maximum exposure interval: 502 x tROW
pixel size: 4.2 μm x 4.2 μm
image area: 2755.2 μm x 2049.6 μm
package/die dimensions: – CSP3: 4185 μm x 4345 μm – COB: 4200 μm x
4360 μm

MAX98357

Single-Supply Operation (2.5V to 5.5V).

263

3.2W Output Power into 4Ω at 5V
2.4mA Quiescent Current
92% Efficiency (RL = 8Ω, POUT = 1W)
22.8µVRMS Output Noise (AV = 15dB)
Low 0.013% THD+N at 1kHz
No MCLK Required
Sample Rates of 8kHz to 96kHz
Supports Left, Right, or (Left/2 + Right/2) Output
Sophisticated Edge Rate Control Enables Filterless Class D Outputs
77dB PSRR at 1kHz
Low RF Susceptibility Rejects TDMA Noise from GSM Radios
Extensive Click-and-Pop Reduction Circuitry

AXP192

Operation Voltage: 2.9V - 6.3V(AMR：-0.3V~15V)
Configurable Intelligent Power Select system
Current and voltage limit of adaptive USB or AC adapter input
The resistance of internal ideal diode lower than 100mΩ

MPU6886

Gyroscope features

Digital-output X-, Y-, and Z-axis angular rate sensors (gyroscopes) with a
user-programmable full-scale range of ±250 dps, ±500 dps, ±1000 dps, and
±2000 dps and integrated 16-bit ADCs
Digitally-programmable low-pass filter
Low-power gyroscope operation
Factory calibrated sensitivity scale factor
lens size: 1/5"
Self-test

Accelerometer features

Digital-output X-, Y-, and Z-axis accelerometer with a programmable full scale
range of ±2g, ±4g, ±8g and ±16g and integrated 16-bit ADCs
User-programmable interrupts
Wake-on-motion interrupt for low power operation of applications processor
Self-test

SPI / I2C dual communication mode

264

Note: There are two versions of M5StickV currently released by M5Stack.
When programming, users need to configure differently according to their
corresponding pin mapping. The specific differences are as follows.

In the M2StickV circuit design of the I2C single-mode (blue PCB) version,
MPU6886 only supports the user to configure its communication mode to
I2C, and its pin mapping is SCL-28, SDA-29.
In the SPI/I2C dual mode (black PCB) version of the M5StickV circuit design,
MPU6886 supports the user to configure its communication mode to SPI or
I2C, and its pin mapping is SCL-26, SDA-27., when using, you can switch CS
Pin level to switch modes (high level 1 is I2C mode, low level 0 is SPI mode)
The specific pin mapping is shown below:

Links

datasheet

MPU6688
SH200Q

Web page

sipeed

GITHUB

API

schematic

file:///C:/Users/xxx/AppData/Local/Temp/calibre_jff2cc_z/wo5uwjlu_pdf_out/8-computerVision.html
file:///C:/Users/xxx/AppData/Local/Temp/calibre_jff2cc_z/wo5uwjlu_pdf_out/8-computerVision.html
https://maixpy.sipeed.com/en/
https://github.com/sipeed/MaixPy/tree/master/projects/maixpy_m5stickv

265

K210-CAM

Procedure

Maixpy referenceexample

file:///C:/Users/xxx/AppData/Local/Temp/calibre_jff2cc_z/wo5uwjlu_pdf_out/k210_camv2.pdf
https://github.com/anoken/purin_wo_motto_mimamoru_gijutsu/tree/master/03_maixpy_example

266

8.1 Set up MaixPy environment

1.1 What is MaixPy?

MaixPy is a project transplanted Micropython into K210 (a 64 - bit dual-core with
hardware FPU, convolution accelerator, FFT, Sha256 of RISC-V CPU), supporting
MCU regular operations, it also incorporates hardware acceleration AI machine
vision and a microphone array, 1TOPS computing power core module is less than
￥50, which quickly develops very low cost and volume of practical AIOT field of
smart applications.

The first thing you need to know is Maixpy uses MicroPython scripting syntax, so
it doesn't require compilation like C language, it can be used without an IDE:
using the serial terminal tool which has been installed previously.

Using IDE, you can edit scripts in real time on the computer and upload them to
the development board，which is convenient to execute scripts directly on the
development board, view camera images in real time on the computer, save files
to the development board and so on.

However, using an IDE will compress and transport some resources, so the
performance will be reduced, and if MaixPy goes down, it’s hard to find problems
like serial terminal.

For more information, please click official websiteto view the official instructions.

1.2 What can MaixPy be used for?

https://maixpy.sipeed.com/zh/

267

Face Recognition
Object Recognition
Color Identification
Emotion Recognition
License Plate Recognition
Sorting System

For more information, please clickofficial websiteto view the official instructions.

2.How to set up the usage environment?

2.1 Preparation of the development environment

2.1.1 Install Driver

Before using MaixPy, we need to install the serial driver before we can
proceed to the next step of development and use. The board is connected to
the computer via a USB-to-serial device (K210 does support USB hardware),
please install the driver according to the USB to serial port chip model of the
board.
Click to download and installthe serial driver
When operating a serial port on Linux or Mac, if you don't want to use “sudo”
every time, perform “sudo usermod -a -G dialout $(whoami)” to add yourself
to the “dialout” user group, which may require a logout or reboot.

2.1.2 Burn Firmware

The firmware must be V0.3.1 or above to use the MaixPy IDE, otherwise the
MaixPy IDE will not be connected. Try to check the firmware version and IDE
version before use, and update it to the latest version to ensure normal use.
Click to download the firmware burner Kflsh , a compressed package after
downloading.

Kflash_gui is cross-platform and can be used on multiple systems (including
Windows, Linux, MacOS, and even Raspberry Pi).

Windows version of Kendryte may be unable to download. Please use the
software kflash_gui to download.

Click to download and installfirmware

https://maixpy.sipeed.com/zh/
https://github.com/elephantrobotics/myCobot/releases/download/0/default.zip
https://github.com/sipeed/MaixPy/releases/download/v0.4.0/maixpy_v0.4.0_50_gcafae9d_m5stickv.bin

268

Burn firmware

After downloading, use the firmware burner to burn the firmware to M5StickV:

269

2.2 Download and install software

2.2.1 Click to download MaixPy-IDE

Note: Please refer to the readme.txt file in the latest version folder for the list of
files. If the download speed is slow, please use the cdn link to download.

Install software

Download the file, directly double-click the exe file to run the installation program
in Windows

Test connection

https://dl.sipeed.com/shareURL/MAIX/MaixPy/ide/v0.2.5

270

Open MaixPy IDE and select the model of the development board from the top
toolbar. Select M5Stickv to connect.

Tool-> Select Board (Tools -> Select Development Board)

Click “connect” to connect MaixPy IDE

When the connection is successful, it will change from green to red.

Below the connect button is the run button, which executes the py file in the
current edit area.

271

Click the Run button again (red) to stop running the current code.

3. Troubleshooting Guide of USB Serial
Port
If you do not see a serial port, check for hardware problems in the following order.

Insert the computer, whether there is a ding-dong sound, such as the sound
of the USB drive loading when inserting the U disk. If there isn’t, it means that
there is a problem with the serial chip on the hardware.
Replace the cable and try again. Replace the USB port of the computer and
try again. It still won't load out, change the computer to confirm.

If you cannot burn firmware, check for hardware problems in the following order.

Use the serial port tool to see if the MAIXPY firmware exists in the hardware.
Set 115200 baud rate to connect the serial port, press the reset key (RST) to
receive the data of the chip. Whatever it happens means the serial port chip
is working normally, but if there is nothing, it means the hardware is
abnormal.
Based on the above, burn the firmware again. Before burning, press the
BOOT key of the hardware and press reset, and then release the BOOT key,
which means the burning is processing normally. If not, it means that Flash is
damaged, you can try to burn to SRAM. If the burning fails, it means that the
serial port chip is abnormal.
If you get to this step and still can't fix the problem, then the hardware does
have a defect.

3.1 Burning mechanism introduction of K210

272

We often call this a key download circuit, can easily complete the control of BOOT
and RST pin and enter the burning mode through the control of the serial port
RST and DTR. As described above, the hardware circuit is expected to replace
human to automatically perform the operation of pressing RST and BOOT, which
is strongly dependent on hardware implementation. Only based on this can data
transmission of TX and RX be carried out, so we need to use functional pins of
UART serial port.

Kflash can be divided into a variety of versions of a variety of burning triggers. We
can simply divide it into several categories, 115200 baud rate at low speed and
1500000 baud rate at high speed, taking the matching burning mode of these two
types of baud rate as the difference point.

If it is found that the download process fails, the baud rate can be reduced
appropriately, because the serial port chip is not stable. The selection of the type
in the tool will only affect the trigger of the first burning mode, and after that the
burning firmware will be burned at the configured baud rate, usually not exceed
the communication burning speed with flash, commonly seen in 50~60 KB/S.

If you find that no matter how to replace the burning mode can not enter, either
the burning version does not match, or the serial chip DTR RST pin problem
(physical).

273

8.2 Color Recognition

Preparation for development
Complete the device link
Complete firmware burning
Complete software environment

Example code

274

Functional Assignment

import sensor
import image
import lcd
import time

from Maix import GPIO
from fpioa_manager import fm, board_info
from machine import UART

clock = time.clock()

fm.register(34, fm.fpioa.UART2_TX, force=True)
fm.register(35, fm.fpioa.UART2_RX, force=True)
uart_Port = UART(UART.UART2, 115200,8,0,0, timeout=1000, read_buf_len= 4096)

lcd.init()
sensor.reset()
sensor.set_pixformat(sensor.RGB565)
sensor.set_framesize(sensor.QVGA)
sensor.run(1)
lcd.rotation(2)

#blue,red,green,yellow

colour = ['blue','red','green','yellow']

colour_threshold =([27, 55, -18, 4, -39, -20],
 [55, 64, 14, 52, -9, 3],
 [29, 65, -109, -18, 36, 59],
 [30, 68, -25, -10, 52, 87])
blobs = [0,0,0,0]

def blobs_output(blobs):
 for b in blobs:
 tmp=img.draw_rectangle(b[0:4])
 tmp=img.draw_cross(b[5], b[6])
 img.draw_string(b[5], b[6], colour[i],color=(255,0,0), scale=2)
 c=img.get_pixel(b[5], b[6])
 _colour = {}
 _colour['colour'] = colour[i]
 data_ = []
 data_.append(_colour)
 data_.append(blobs[0])
 uart_Port.write(str(blobs))

def show_fps():
 fps =clock.fps()
 img.draw_string(200, 1, ("%2.2ffps" %(fps)),color=(255,0,0), scale=2)

while True:
 clock.tick()
 img=sensor.snapshot()
 show_fps()

 for i in range(4):
 blobs[i] = img.find_blobs([colour_threshold[i]],area_threshold=100,pixels_thre
 if blobs[i]:
 blobs_output(blobs[i])

 lcd.display(img)

275

Identify four colors
The serial port outputs data
The display screen displays the recognized color blocks

Define the color you want to recognize
Open the MaixPy IDE and select Tool -- Machine Vision -- Curve Editor

Open source image location and select frame buffer.

276

Adjust the Lab tie down value mainly in the binary image field, and white pixel is
the tracked pixel

Related knowledge

MaixPy 机械视觉 API

Full Knowledge of Lab color space

Name Before we begin, let's clarify the name of the Lab Color Space: The full
name of Lab is CIELAB, sometimes also written CIE Lab*. CIE stands for the
International Commission on Illumination, an International authority on
lighting, colour, etc..
Channel Lab is composed of a brightness channel and two color channels. In
Lab color space, each color is represented by three numbers, L, a, b, and the
meaning of each component is as follows: L stands for brightness a is the
component from green to red b is the component from blue to yellow
Perceptual uniform Lab is designed based on people's perception of colors.
More specifically, it is perceptual uniform. Perceptual uniform means that if
the number (L, a, b) changes equally, then it brings about a similar degree of
visual change. Lab is more consistent with human vision than RGB and
CMYK color space, and is easier to adjust. If you want to adjust the
brightness (regardless of the Helmholtz -- Kohlrausch effect, refer to the note
below), adjust the L channel, and if you want to adjust only the color balance,
adjust a and b respectively. Note: Helmholtz–Kohlrausch effect is an illusion
in the human eyes -- that colors appear brighter when they are saturated.
Device-independent Lab has a nice feature -- Device-independent. That is,
given a white point in the color space (the figure below represents a white
spot in a color space), the color space can clearly determine how each color
is created and displayed, regardless of the display medium used.

https://maixpy.sipeed.com/zh/api_reference/machine_vision/image/image.html

277

 For
example, when you want to convert an RGB image on the screen to a CMYK
image for printing, you can first convert it from RGB to Lab and then convert
the Lab image to CMYK mode. Because gamut of Lab is larger than RGB
and CMYK (The gamut of Lab is so large that a large part of it is beyond the
range of human vision that it cannot be called "color"). It is important to note
that Lab defines the color relative to the white point. We will not know the
other colors until we define the color of the white point (e.g. it is defined as
CIE Standard Illuminant D50).
Range of value In theory, L, a, and b are all real numbers, but in practice
they are confined to a range of integers: The larger the L is, the higher the
brightness is. When L is 0, it represents black, and when L is 100, it
represents white. a and b are both gray when they are 0. When a goes from
a negative number to a positive number, the corresponding color will change
from green to red. When b goes from a negative number to a positive
number, the corresponding color will change from blue to yellow. In practical
application, we often use the range of color channel between -100~+100 or
-128127.
Visualize Lab* has three components in total, so it can be presented in three
dimensional space. In two-dimensional space, the Chromaticity Diagram is
often used to visualize it, that is, to fix the brightness L, to see the change of
a and b. Note that these visualizations are not accurate, it’s just helpful to
understand.
CIELUV There is a color space similar to Cielab, called Cie 1976 (L, U, V),
also known as Cieluv. The L of the color space is the same as the CIELAB,
but the color component is different.
Conversion between LAB and RGB and CMYK Since RGB and CMYK are
both device related, they cannot be directly converted to Lab. So before the

278

conversion, you must define an absolute color space, such as sRGB or
Adobe RGB. Conversion from RGB to SrGB is device independent, but the
subsequent conversion are device independent.

279

8.3 Shape Recognition

Preparation for development
Complete the device link
Complete firmware burning
Complete software environment

Example Code

identify the rectangle
import sensor
import image
import lcd
import time
from Maix import GPIO
from fpioa_manager import fm, board_info
from machine import UART
clock = time.clock()
fm.register(34, fm.fpioa.UART2_TX, force=True)
fm.register(35, fm.fpioa.UART2_RX, force=True)
uart_Port = UART(UART.UART2, 115200,8,0,0, timeout=1000, read_buf_len= 4096)
lcd.init()
sensor.reset()
sensor.set_pixformat(sensor.RGB565)
sensor.set_framesize(sensor.QQVGA)
sensor.run(1)
lcd.rotation(2)
def uart_write(i):
 data_ = []
 data_.append(blobs[i])
 uart_Port.write(str(data_))
while True:
 img=sensor.snapshot()
 RECT = img.find_rects(threshould = 10000)
 if RECT:
 for b in RECT:
 img.draw_rectangle(b.rect(),color =(255,0,0))
 for p in b.corners():
 img.draw_circle(p[0],p[1],3,color = (0,255,0))
 c=img.get_pixel(b[0], b[1])
 lcd.display(img)

280

Functional Assignment
Identify the specified shape
Return the corresponding data

Relate knowledge
MaixPy 机械视觉 API

identify the circle
import sensor, image, time, lcd
sensor.reset()
sensor.set_pixformat(sensor.RGB565)
sensor.set_framesize(sensor.QVGA)
sensor.skip_frames(time = 300)
sensor.run(1)
lcd.init()
lcd.rotation(2)
clock = time.clock()
while(True):
 clock.tick()
 img = sensor.snapshot()
 for c in img.find_circles(threshold = 1800, x_margin = 20, y_margin = 20, r_margin
 r_min = 5, r_max = 45, r_step = 20):
 img.draw_circle(c.x(), c.y(), c.r(), color = (255, 0, 0))#识别到的红色圆形用红色
 print("r %f" % c.r())
 print("FPS %f" % clock.fps())
 lcd.display(img)

https://maixpy.sipeed.com/zh/api_reference/machine_vision/image/image.html

281

8.4 Face Recognition

Preparation for development
Complete the device link
Complete firmware burning
Complete software environment

Burn specified firmware
We use the MaixPy IDE to run this routine. First, we need to download the model
we need from the MaixHub, which need us to provide the machine code, so we
download the bin file that can get the machine code, then burn it token_gen bin
file address

Get Machine code

Use kfalsh_gui to burn ken_gen.bin file，click it to
download.

https://en.bbs.sipeed.com/uploads/default/original/1X/bca0832bed92a1ada63bd05327688784e2ef14d1.zip

282

View the machine code in the serial output

After the firmware is burned, connect the computer, open the serial assistant, then
open the serial port.

283

Download model
With the machine code we can start to download the corresponding model files.

Model download address

model download address

List of files to extract :

The blue part is the model file, and the yellow part is the bin file of MaixPy.This is
the compact version, and the size is relatively small, just more than 600 KB.
Inside the json file is the configuration, which is about where these files should be
downloaded to Flash and whether they need to be checked.

https://www.maixhub.com/index.php/index/user/download/id/22

284

{
 "version": "0.1.0",
 "files": [
 {
 "address": 0,
 "bin": "maixpy_face_ide.bin",
 "sha256Prefix": true
 },
 {
 "address": 5242880 ,
 "bin": "FD_a6e91e13a0de48bafec324646d070358.smodel",
 "sha256Prefix": false
 },
 {
 "address": 6291456 ,
 "bin": "KP_chwise_a6e91e13a0de48bafec324646d070358.smodel",
 "sha256Prefix": false
 },
 {
 "address": 7340032 ,
 "bin": "FE_mbv1_0.5_a6e91e13a0de48bafec324646d070358.smodel",
 "sha256Prefix": false
 }
]
}

Burn model files
Download the Kkfpkg file to our development board using kfalsh_gui and run it

285

Run example code
code address

https://github.com/sipeed/MaixPy_scripts/blob/master/machine_vision/demo_face_recognition.py

286

import sensor,image,lcd # import 相关库
import KPU as kpu
import time
from Maix import FPIOA,GPIO
task_fd = kpu.load(0x200000) # 从flash 0x200000 加载人脸检测模型
task_ld = kpu.load(0x300000) # 从flash 0x300000 加载人脸五点关键点检测模型
task_fe = kpu.load(0x400000) # 从flash 0x400000 加载人脸196维特征值模型
clock = time.clock() # 初始化系统时钟，计算帧率
key_pin=16 # 设置按键引脚 FPIO16
fpioa = FPIOA()
fpioa.set_function(key_pin,FPIOA.GPIO36)
key_gpio=GPIO(GPIO.GPIO36,GPIO.IN)
last_key_state=1
key_pressed=0 # 初始化按键引脚 分配GPIO7 到 FPIO16
def check_key(): # 按键检测函数，用于在循环中检测按键是否按下，下降沿有效
 global last_key_state
 global key_pressed
 val=key_gpio.value()
 if last_key_state == 1 and val == 0:
 key_pressed=1
 else:
 key_pressed=0
 last_key_state = val

lcd.init() # 初始化lcd
sensor.reset() #初始化sensor 摄像头
sensor.set_pixformat(sensor.RGB565)
sensor.set_framesize(sensor.QVGA)
sensor.set_hmirror(1) #设置摄像头镜像
sensor.set_vflip(1) #设置摄像头翻转
sensor.run(1) #使能摄像头
anchor = (1.889, 2.5245, 2.9465, 3.94056, 3.99987, 5.3658, 5.155437, 6.92275, 6.718375
dst_point = [(44,59),(84,59),(64,82),(47,105),(81,105)] #standard face key point posit
a = kpu.init_yolo2(task_fd, 0.5, 0.3, 5, anchor) #初始化人脸检测模型
img_lcd=image.Image() # 设置显示buf
img_face=image.Image(size=(128,128)) #设置 128 * 128 人脸图片buf
a=img_face.pix_to_ai() # 将图片转为kpu接受的格式
record_ftr=[] #空列表 用于存储当前196维特征
record_ftrs=[] #空列表 用于存储按键记录下人脸特征， 可以将特征以txt等文件形式保存到sd卡后，读
names = ['Mr.1', 'Mr.2', 'Mr.3', 'Mr.4', 'Mr.5', 'Mr.6', 'Mr.7', 'Mr.8', 'Mr.9' , 'Mr.
while(1): # 主循环
 check_key() #按键检测
 img = sensor.snapshot() #从摄像头获取一张图片
 clock.tick() #记录时刻，用于计算帧率
 code = kpu.run_yolo2(task_fd, img) # 运行人脸检测模型，获取人脸坐标位置
 if code: # 如果检测到人脸
 for i in code: # 迭代坐标框
 # Cut face and resize to 128x128
 a = img.draw_rectangle(i.rect()) # 在屏幕显示人脸方框
 face_cut=img.cut(i.x(),i.y(),i.w(),i.h()) # 裁剪人脸部分图片到 face_cut
 face_cut_128=face_cut.resize(128,128) # 将裁出的人脸图片 缩放到128 * 128像素
 a=face_cut_128.pix_to_ai() # 将猜出图片转换为kpu接受的格式
 #a = img.draw_image(face_cut_128, (0,0))
 # Landmark for face 5 points
 fmap = kpu.forward(task_ld, face_cut_128) # 运行人脸5点关键点检测模型
 plist=fmap[:] # 获取关键点预测结果
 le=(i.x()+int(plist[0]*i.w() - 10), i.y()+int(plist[1]*i.h())) # 计算左眼位
 re=(i.x()+int(plist[2]*i.w()), i.y()+int(plist[3]*i.h())) # 计算右眼位置
 nose=(i.x()+int(plist[4]*i.w()), i.y()+int(plist[5]*i.h())) #计算鼻子位置
 lm=(i.x()+int(plist[6]*i.w()), i.y()+int(plist[7]*i.h())) #计算左嘴角位置
 rm=(i.x()+int(plist[8]*i.w()), i.y()+int(plist[9]*i.h())) #右嘴角位置
 a = img.draw_circle(le[0], le[1], 4)
 a = img.draw_circle(re[0], re[1], 4)
 a = img.draw_circle(nose[0], nose[1], 4)
 a = img.draw_circle(lm[0], lm[1], 4)

287

Run the program with MaixPy IDE
Program running as shown in figure

 a = img.draw_circle(rm[0], rm[1], 4) # 在相应位置处画小圆圈
 # align face to standard position
 src_point = [le, re, nose, lm, rm] # 图片中 5 坐标的位置
 T=image.get_affine_transform(src_point, dst_point) # 根据获得的5点坐标与标准
 a=image.warp_affine_ai(img, img_face, T) #对原始图片人脸图片进行仿射变换，变换
 a=img_face.ai_to_pix() # 将正脸图像转为kpu格式
 #a = img.draw_image(img_face, (128,0))
 del(face_cut_128) # 释放裁剪人脸部分图片
 # calculate face feature vector
 fmap = kpu.forward(task_fe, img_face) # 计算正脸图片的196维特征值
 feature=kpu.face_encode(fmap[:]) #获取计算结果
 reg_flag = False
 scores = [] # 存储特征比对分数
 for j in range(len(record_ftrs)): #迭代已存特征值
 score = kpu.face_compare(record_ftrs[j], feature) #计算当前人脸特征值与已
 scores.append(score) #添加分数总表
 max_score = 0
 index = 0
 for k in range(len(scores)): #迭代所有比对分数，找到最大分数和索引值
 if max_score < scores[k]:
 max_score = scores[k]
 index = k
 if max_score > 85: # 如果最大分数大于85， 可以被认定为同一个人
 a = img.draw_string(i.x(),i.y(), ("%s :%2.1f" % (names[index], max_sco
 else:
 a = img.draw_string(i.x(),i.y(), ("X :%2.1f" % (max_score)), color=(25
 if key_pressed == 1: #如果检测到按键
 key_pressed = 0 #重置按键状态
 record_ftr = feature
 record_ftrs.append(record_ftr) #将当前特征添加到已知特征列表
 break
 fps =clock.fps() #计算帧率
 print("%2.1f fps"%fps) #打印帧率
 a = lcd.display(img) #刷屏显示
 #kpu.memtest()

#a = kpu.deinit(task_fe)
#a = kpu.deinit(task_ld)
#a = kpu.deinit(task_fd)

288

Press BUTTON A to record the face. After the face is recorded, the name will be
assigned in order and displayed when the face is recognized.

Related knowledges

289

8.5 QR code Identification

Preparation for development
Complete the device link
Complete firmware burning
Complete software environment
Use MaixPy to generate recognizable QR codes Select -> Tools -> Machine
Vision -> AprilTag ->TAG36H11 to generate the recognizable code

example code

290

功能解析

AprilTags3D定位例程
#
这个例子展示了OpenMV Cam的功能，可以检测OpenMV Cam M7/H7 上的April标签。OpenMV2 M4版本无

import sensor, image, time, math, lcd

sensor.reset()
sensor.set_pixformat(sensor.RGB565)
sensor.set_framesize(sensor.QQVGA) # 如果分辨率太高，内存可能溢出
sensor.skip_frames(time = 2000)
#sensor.set_auto_gain(False) # 必须关闭此功能，以防止图像冲刷…
#sensor.set_auto_whitebal(False) # 必须关闭此功能，以防止图像冲刷…
clock = time.clock()
lcd.init()
lcd.rotation(2)

注意！与find_qrcodes不同，find_apriltags方法不需要对镜像进行镜头校正。

#标签系列有什么区别？ 那么，例如，TAG16H5家族实际上是一个4x4的方形标签。
#所以，这意味着可以看到比6x6的TAG36H11标签更长的距离。 然而，较低的H值（H5对H11）
#意味着4x4标签的假阳性率远高于6x6标签。 所以，除非你有理由使用其他标签系列，
#否则使用默认族TAG36H11。

AprilTags库输出标签的姿势信息。 这是x / y / z平移和x / y / z旋转。
x / y / z旋转以弧度表示，可以转换为度数。 至于翻译单位是无量纲的，
你必须应用一个转换函数。

f_x是相机的x焦距。它应该等于以mm为单位的镜头焦距除以x传感器尺寸（以mm为单位）乘以图像中的像
以下数值适用于配备2.8毫米镜头的OV7725相机。

f_y是相机的y焦距。它应该等于以mm为单位的镜头焦距除以y传感器尺寸（以mm为单位）乘以图像中的像
以下数值适用于配备2.8毫米镜头的OV7725相机。

c_x是以像素为单位的图像x中心位置
c_x是以像素为单位的图像x中心位置

f_x = (2.8 / 3.984) * 160 # find_apriltags 如果没有设置，则默认为这个
f_y = (2.8 / 2.952) * 120 # find_apriltags 如果没有设置，则默认为这个
c_x = 160 * 0.5 # find_apriltags 如果没有设置，则默认为这个 (the image.w * 0.5)
c_y = 120 * 0.5 # find_apriltags 如果没有设置，则默认为这个 (the image.h * 0.5)

def degrees(radians):
 return (180 * radians) / math.pi

while(True):
 clock.tick()
 img = sensor.snapshot()
 for tag in img.find_apriltags(fx=f_x, fy=f_y, cx=c_x, cy=c_y): # 默认为 TAG36H11
 tmp = img.draw_rectangle(tag.rect(), color = (255, 0, 0))
 tmp = img.draw_cross(tag.cx(), tag.cy(), color = (0, 255, 0))
 print_args = (tag.x_translation(), tag.y_translation(), tag.z_translation(), \
 degrees(tag.x_rotation()), degrees(tag.y_rotation()), degrees(tag.z_rotati
 # 变换单位不详。旋转单位是度数。
 print("Tx: %f, Ty %f, Tz %f, Rx %f, Ry %f, Rz %f" % print_args)
 print(clock.fps())
 lcd.display(img)

291

识别指定的QR码
串口输出数据

显示屏显示识别到的QR码

扩展知识

MaixPy 机械视觉 API

april官网

https://maixpy.sipeed.com/zh/api_reference/machine_vision/image/image.html
https://april.eecs.umich.edu/software/apriltag.html

292

1 Maintenance

After-sales Service
Return service is limited to goods not opened within 7 days after the receipt date
of logistics of the products. The freight or other risks incurred in return shall be
borne by the customer.
Customers should provide the purchasing invoice and warranty card as the
warranty certification when a warranty is being asked.
Elephant Robotics will be responsible for the hardware faults of products
caused by the normal using during the warranty period.

The warranty period starts from the date of purchase or the receipt date of the
logistics.
The faulty parts from the products will be owned by Elephant Robotics, and the
appropriate cost will be charged if necessary.

If you need to apply for warranty service, please contact our customer service first
to confirm the detailed information. The following is warranty terms of detailed
components:

Note: If there is a conflict with the Product Brochure, the User Manual shall
prevail.

Servos

Warranty
Period Warranty Services

≤1 months Elephant Robotics offers a free new sever motor and bear
the freight.

1-3 months Elephant Robotics offers a free new sever motor, customs
shall bear the freight.

≥3 months Customers need to buy it themselves.

293

Electrical Parts（M5 Hardware）

Warranty
Period Warranty Services

≤3
months

Customers need to send it back after disassembly, Elephant
Robotics shall send a new one for free and bear the freight
out and home.

3-6
months

Customers need to send it back after disassembly and bear
the freight out and home, Elephant Robotics shall send a new
one for free.

≥6
months Customers need to buy it themselves.

Structure Parts, including Shell Parts

保修
期限

保修服务

≤1
years

Elephant Robotics offers free new components once, customs
shall bear the freight.

≥1
years Customers need to buy it themselves.

During the warranty period of the delivered product, the company only repairs the
malfunctions that occur during normal use of the robot for free. However, in the
following cases, the customer will be charged for repairs (even during the
warranty period):

Damage or malfunction caused by incorrect use and improper use different
from the manual.
Failure caused by unauthorized disassembly by the customer.
Damage caused by improper adjustment or unauthorized repairs.
Damage caused by natural disasters such as earthquakes and floods.

please strictly follow the instructions in this manual and related manual to operate
the robot.

Limit

Joint Range of Motion/Angle

Joint 1 -165 ~ +165

Joint 2 -165 ~ +165

Joint 3 -165 ~ +165

Joint 4 -165 ~ +165

Joint 5 -165 ~ +165

Joint 6 -175 ~ +175

294

After we receive myCobot, we should pay attention to the limit of each joint of
myCobot, and the rotation angle of each axis cannot exceed its own
maximum physical limit.
It should be turned at a small angle and gently. After reaching the limit, you
should not continue turning.
Be careful not to touch the robot arm itself when the joint is running so as not
to knock it out.

Connectivity issues (November 2020
batch)

Problem description: when the arm suddenly loses force and can not be driven,
open the J5 joint shell to check whether the connection line is off, then need to cut
off the longer pin, attach insulation tape and then put back to the steering gear,
and cover the cover plate. **Replacement steps

Need to remove back cover housing
Cable adjustment and adhesive tape Youtube-video link:
https://youtu.be/1wq0kTJVqw4

Shell Disassembly
Youtube-[Video Link: https://youtu.be/wHzFsExkYrE] Steps

Prepare the items as shown, loosen the screws of the corresponding shell,
force properly, and gently remove the shell from the left and right.
After removing the shell, check that there is no damage inside, you can install
the new shell.
l Fasten the new shell, the shell and the manipulator have a clear touch, after
fastening, the screws are placed and tightened to complete the shell removal.

calibration
Youtube-video Link：https://youtu.be/vGznxW4OF10

https://youtu.be/1wq0kTJVqw4
https://youtu.be/wHzFsExkYrE
https://www.bilibili.com/video/BV1FT4y1P7BV/
https://youtu.be/vGznxW4OF10

295

steps

Burning calibration on myStudio
When the zero position of the manipulator is aligned with the zero position
calibration groove of each joint
Adjust the zero position calibration groove manually and press the A key
(leftmost, set the steering gear zero) to calibrate each joint in turn
After calibration, the basic screen will show that all steering gear bits have
been set.
Press the B key (middle key) to test the steering gear, the test is finished and
the correction is over.
If not, press the C key (right-click) to reset the steering gear zero and repeat
the above steps.

296

2 常见问题FAQ
faq

Hardware

Q： why it appear small jitter when I use the vertical state, but not when
running?

A：please check whether it is vertical, vertical state is not affected by gravity,
mechanical voids lead to small jitter, after the use of this state will not occur. The
recommended speed in this state is 400-500.

Q: Will ROS system charge later ?

A：ROS is open source and will update on our github. There is no charge for
firmware upgrades.

Q：myCobot joint hard limit

A： The first axis and fifth axis have limit, the first axis clockwise about 160°,
counterclockwise about 160°. the fifth axis clockwise and counterclockwise
rotation about 160° Note: when turning the robot arm, it should be small angle
and gently, after reaching the limit. you can not continue to rotate.

Q： what is the unit of velocity of the robotic arm?

A： speed 180 degrees per second

Q：Is it just not support M5STACK's steering gear, will it support other M5
sensors?

A：M5STACK Basic currently supports all sensors.

Q：Do Atom support sensors in the future?

A：atom support needs to further open the interface, within our plan, need to wait

Software

Q： why can't my compiler find the corresponding device?

A：You need to build the development environment and install the corresponding
project library to develop the equipment.

Q： why my compiler can't compile the sample program properly?

A： the required project library is not installed or the project inventory is in
conflict, it is recommended to check that the project library is installed correctly. If
the installation is correct and still can not be compiled, please reinstall the arduino
development environment.

Q： why did I burn the firmware to the ATOM terminal and the device didn't
work properly?

297

A：ATOM terminal firmware needs to use our factory firmware, you can not
change other unofficial firmware in use, If the device burn other firmware
accidentally. You can use "myCobot firmware burner" to select ATOM terminal-
select serial port-select ATOMMAIN firmware to burn the ATOM terminal.

l UIFlow

Q：UI Flow don't support with the latest firmware? A： Need M5STACK update,
we have asked M5 to help us update, the time cycle is unknown.

l RoboFlow

Q： Can I use robotStudio software programming A： Our own industrial
programming software RoboFlow can be used, robotStudio is ABB company, it
can not communicate with us.

l ROS

Q：ROS version A：/ rosdistro：kinetic /rosversion：1.12.17

Q：Does the ROS system operate with a computer attached to the robot arm?
A： Yes, connect with the computer is ok.

Q：Ros folder downloaded from github runs only display controls but not display
myCobot 3D models. A： You need to open rviz,rosrun rviz rviz manually

Q：Range out or error[101] occurs when in runtime A： Check that the serial port
is correct, basic and atom firmware are correct.

Q： operation mode A： It need to open 3 terminal for current operation

l myStudio

Q：Does myStudio replace the UIFlow? A： No, it insteads of the current
downloader.

l myCobot phone controller

Q：I have a few questions to ask about APP: 1) Bluetooth has two controls on the
right, one is back to zero, the other is? 2) The sixth axis has no mechanical zero,
how to get the robot back to zero? Rz the Euler angle is 0. 3) Press the control
button of the joint and end shaft, then loose, will it keep moving? A：1. Another
free model.

2.When the robot arm is in calibration correction, the current position is set to zero
by default.

3.After release, you should stop. APP use the jog control. However, due to the
instability of Bluetooth connection, there may be a stop instruction but arm do not
received.

l Firmware Burner

Q： Motor don't work A： Use the latest version 1.3 firmware burner, burn
atommain to the atom. Only if computer link to the end of the robotic arm typeC
interface can you update the firmware to atom.

298

Q： After burn, how to return to the factory settings? A： Download firmware
burner or arduino program, burn main firmware.

l Others

Q：What is the difference between MainControl and Transponder?

A：MainControl is the factory with its own, transponder is the transfer program,
after burning can be directly sent packet protocol control.

Q： default software - Drag to teach, action can only be saved to ram can not be
saved to flash A： old version will be released with the Chinese version
mainControl after the bug adjustment

Q： each Data is a hexadecimal number, right, and then converted to hex
characters to send to the machine A： right, serial communication sends and
receives data in HEX form

Others

Q：Can I get real-time data while executing instructions

A：It is not allowed for the time being, the bus can not be disturbed when working

Q： The end interface rudder model has a limited end of the control card,
what is the relationship with the M5stack? Is it independent?

A： End of the device needs to be able to adapt to our controller, it can support
PWM mode control of the steering gear.

Q：what does the speed parameter 0-100 in the WrigeAngle mean

A： speed parameter 0-100 is the percentage of speed

Q： Can I use GetAngles to get the angle information of 6 axes?

The return value of the

A：GetAngles is a float array with a length of 6. The index starts at 0, followed by
6 joints

Q： Is servo or stepper motor?

A：myCobot carry six servo motors.

Q： repeated positioning accuracy

A：+/-0.5mm

Q： what is the reducer structure?

A： reducer is gear set.

Q： what is the gear?

A： metal tooth structure

Q： what is this programmed with?

299

A：myCobot is open ROS, now supports most platforms on the market including
UIFLOW,Arduino,microPython,FreeROTS

Q：How is the Real Time

A：Uart communications, maximum 50 ms delay, normal 5 ms

Q:where can the detailed documentation, sample code of the Arduino
library and API interface be seen?

A： check our github: https://github.com/elephantrobotics/myCobot

Q： How much time continuous operation / motor life

A：300-500 hours, rest 15-30 minutes before use will prolong the life of the arm;

Q： shell material

A： plastic; photosensitive resin; SLA

Q：Do the robot arm have torque sensors

A： most collaborative robots don't have torque sensors

Q：Brand of motor

A： self-made motor, external processing

Q： Turn the joint tape encoder?

A： yes

Q： not harmonics?

A： notss

Q： I don't understand servo steering gear , is it a steering gear like a
model?

A：it is a steering gear like a model, but we customize and modify a lot, is more
suitable for the manipulator. Six-axis linkage, three-power interpolation, not as
uniform as industrial robots, the final price here.

Q：motor parameters

A：large steering gear: rated load 10 kgcm, maximum speed 60 rpm, voltage 7.4
V, encoder 12 bit magnetic knitting.

small steering gear: rated load 2 kgcm, maximum speed 80 rpm, voltage 7.4 V,
encoder 12 bit magnetic knitting.

Q：ROS version

l rosdistro：kinetic //

l rosversion：1.12.17//

Q： Angle Accuracy

l 360/4096=0.0879°

Q： power supply range

https://github.com/elephantrobotics/myCobot

300

l 6~9V

3~5A

Q：IO input, output, voltage, how to debug; why marked 5V?

A：3.3 V,atom of IO control is gradually open; there are 5V of power; debugging
needs to see which platform to develop, arduino,uiFlow,python is different

Q：IO port connection problem

A： IO according to the position, it is divided into the IO, on the basic of the
manipulator base and the IO;IO at the end of the manipulator, which is divided
into digital signal input and output DIO, analog signal, communication I2C,SPI,
power grounding.

Q：Are encoders absolute or incremental?

A： absolute value (steering gear with high precision encoder)

Q：asic software brush uiflow, later with your burning software brush back
maincontrol, why the robot arm track recording software can not be used

A：atom firmware version is not compatible, can only use the same version of
firmware; update the atom version can

Q： why did it remind TimeOutwhen burning?

A： power up again or press the reset button when burning

Q： why did lights go out when I burn Bluetooth or Transponder atom

A： need command control to reopen LED, close by default

Q： why my equipment can't be used after burning the demo program

A： need to check your version number, corresponding to the version number of
firmware can, different versions of the program is incompatible

Q： the accuracy range deviation of the manipulator is a little large

A： the current accuracy, we need more precision to view our industrial arm

Q： I can't drag to teach after burning

A： First check whether the basic and atom are burned; whether the burned
firmware corresponds to the requirements to be achieved; and whether the
burning is the latest firmware bottom Basic burning atommain at the top

Q：can't control robotic arm when burn transponder

A：Atom also need to burn, burn firmware atom2.1alpha; Basic burn transponder

Q： by which of the six steering gear

A：Atom control at top

Q：python API sample tutorial

A： currently have demo, test code under github Test folder

301

Q：Do you need to start again after drag the instruction

A： because when re-recording joint motor lock position can not be cut off, click
on the release can make the arm joint loose, can be the next drag teaching;
power failure can also start again

Q：Does instruction be achieved by reading the set potential value (drag
instruction principle)

A： principle is like this

Q：What information does the send to the joint motor through the ROS?
Can feedback encoder information

A： potential value; read potential value

Q： show six values in Get coords

A：x,y,z,rx,ry,rz, translation plus rotation; z-y-x compliance

Q：AC flash red light, robotic arm screen not on

A： if the motor doesn't move, may be Basic is broken. Ac frequently flash red
lights mean power supply, then power off and power supply. It could be some
pcba broken.

302

3 Resources
Website

Official Website
https://www.elephantrobotics.com/en/

myCobot github-software
https://github.com/elephantrobotics/myCobot

M5 UI Flow
https://docs.m5stack.com/#/zh_CN/quick_start/m5core/m5stack_core_get_started
_MicroPython

Videos

youtube

maintenance
connecting line https://youtu.be/1wq0kTJVqw4
disassembly https://youtu.be/wHzFsExkYrE
limit https://youtu.be/PUeU-mynljw
calibration https://youtu.be/vGznxW4OF10

Tutorials unboxing https://youtu.be/Lwi8UoihzNc
free move https://youtu.be/WzrbOrdQop0
Maincontrol https://youtu.be/VKd8b989M8g
ROS https://youtu.be/-Jo_IJ8RaXc
Arduino https://youtu.be/pkQIApDRJpo
myStudio https://youtu.be/Kr9i62ZPf4w

others
2 display screens-traffic signals https://youtu.be/9ej0tEwhXuE
promotional video https://youtu.be/uSw5rsymjVY
User cases(1) https://youtu.be/0Al1MN50RS0
User cases(2) https://youtu.be/eoR2-MId_-I

https://www.elephantrobotics.com/en/
https://github.com/elephantrobotics/myCobot
https://docs.m5stack.com/#/zh_CN/quick_start/m5core/m5stack_core_get_started_MicroPython
https://youtu.be/1wq0kTJVqw4
https://youtu.be/wHzFsExkYrE
https://youtu.be/PUeU-mynljw
https://youtu.be/vGznxW4OF10
https://youtu.be/Lwi8UoihzNc
https://youtu.be/WzrbOrdQop0
https://youtu.be/VKd8b989M8g
https://youtu.be/-Jo_IJ8RaXc
https://youtu.be/pkQIApDRJpo
https://youtu.be/Kr9i62ZPf4w
https://youtu.be/9ej0tEwhXuE
https://youtu.be/uSw5rsymjVY
https://youtu.be/0Al1MN50RS0
https://youtu.be/eoR2-MId_-I

	1 myCobot - From 0 to 1
	2 Product
	3 How to Read
	4 Use Cases
	5 Quick Start
	6 myCobot Pi
	pymycobot
	1、arm_swing
	2、arm_route_plan
	3、arm_safety_control
	4、testing_arm
	5、arm_dance
	6、use_arm
	7、calibration_manipulator_arm
	8、control_sunction_pump

	myblockly
	Myblockly Introduction
	1、relax_fixed_arm
	2、testing_jaw
	3、set_move_time
	4、mechanism_control
	5、advanced_control_arm

	Ros

	1 Background Knowledge
	1.1 Industrial Robots
	1.2 Software
	1.2.1 github
	1.2.2 arduino

	1.3 Eletronics
	1.4 Mechanics
	1.5 Servos and Motors

	2 Hardware Learning
	2.1 Basic
	2.2 Atom
	2.3 MyCobot Servos
	2.4 Mechanical & Mounting

	3 myStudio
	3.1 myStudio

	Software Platfrom and API
	1 arduino
	1.1 api
	1.2 Test

	2 uiflow
	3 python
	3.1 api

	4 ROS&Moveit
	4.1 Install enviroment
	4.2 Install mycobot_ros
	4.3 Control and Follow
	4.4 Keyboard control
	4.5 moveit

	5 RoboFlow
	6 Communication Protocols
	7 Accessories
	7.1 End-effectors
	7.1.1 Gripper
	7.1.2 Sucktion Pump
	7.1.3 Climps

	7.2 Support
	7.2.1 G-Shape Support
	7.2.2 Sucktion Support

	7.3 Parst

	8 Computer Vision
	8.1 Environments
	8.2 Color Detection
	8.3 Shape Detection
	8.4 Face Detection
	8.5 QR code Detection

	1 Maintenance
	2 FAQ
	3 Resources

